首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We describe an improved Phos-tag SDS-PAGE (Zn(2+)-Phos-tag SDS-PAGE) using a dizinc(II) complex of Phos-tag acrylamide in conjunction with a Bis-tris-buffered neutral-pH gel system to detect shifts in the mobility of phosphoproteins. An existing technique (Mn(2+)-Phos-tag SDS-PAGE) using a polyacrylamide-bound Mn(2+)-Phos-tag and a conventional Laemmli's buffer system under alkaline pH conditions has limitations for separating certain phosphoproteins. The major improvements were demonstrated by visualizing novel up-shifted bands of commercially available pepsin, recombinant Tau treated in vitro with tyrosine kinases, and endogeneous β-catenin in whole-cell lysates. Additionally, the Zn(2+)-Phos-tag SDS-PAGE gels showed better long-term stability than the Mn(2+)-Phos-tag SDS-PAGE gels. We can therefore provide a simple, convenient, and more reliable homemade gel system for phosphate-affinity SDS-PAGE.  相似文献   

2.
We have previously shown that the dinuclear zinc(II) complex Phos-tag and its derivatives act as phosphate-capture molecules in aqueous solution under conditions of neutral pH. In this study, our aim was to develop more-advanced applications for the detection of phosphopeptides and phosphoproteins by using several newly synthesized Phos-tag derivatives, including a bisbiotinylated Phos-tag (BTL-108), a tetrakisbiotinylated Phos-tag (BTL-109), and a monobiotinylated Phos-tag with a dodeca(ethylene glycol) spacer (BTL-111), as well as the commercially available product BTL-104. Among these complexes, BTL-111 showed the best performance in Western blotting by an ECL system using HRP conjugated streptavidin. In addition, in a quartz-crystal microbalance analysis of a phosphoprotein, the presence of the long hydrophilic dodeca(ethylene glycol) spacer in a novel Phos-tag sensor chip coated with BTL-111 resulted in a greater sensitivity than was achieved with a similar chip coated with BTL-104. Moreover, a peptide microarray technique using the ECL system and BTL-111 permitted high-throughput assays for the specific and highly sensitive detection of protein kinase activities in cell lysates.  相似文献   

3.
Herein, we demonstrate the separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. The phosphate-affinity site is a polyacrylamide-bound Phos-tag that enables the mobility shift detection of phosphoproteins from their nonphosphorylated counterparts. As the first practical example of the separation, we characterized the monophosphorylated Tau isotypes by each of three tyrosine kinases, c-Abl, MET, and Fyn. Each monophosphoisotype phosphorylated at the Tyr-394, Tyr-197, or Tyr-18 was detected as three distinct migration bands. As a further application, we extended this technique to the mobility shift analysis of His and Asp phosphoisotypes in the Sinorhizobium meliloti FixL/FixJ two-component system. FixL is autophosphorylated at the His-285 with ATP, and the phosphate group is transferred to the Asp-54 of FixJ and subsequently removed by the FixL phosphatase activity. Using this method, we first performed simultaneous detection of the phosphorylated and nonphosphorylated isotypes of FixL and FixJ generated in their phosphotransfer reaction in vitro. As a result, a monophosphoisotype of FixL containing the phosphorylated His residue was confirmed. As for FixJ, on the other hand, two monophosphoisotypes were detected as two distinct migration bands. One is a well-known isotype phosphorylated at the Asp-54. The other is a novel isotype phosphorylated at the His-84.  相似文献   

4.
We describe a novel technique of phosphate‐affinity SDS‐PAGE using Phos‐tag to analyze large phosphoproteins with molecular masses of more than 200 kDa. The protein phosphoisotypes were clearly separated as up‐shifted migration bands in a 3% w/v polyacrylamide gel containing 20 μM Phos‐tag and 0.5% w/v agarose. In subsequent immunoblotting, the procedure permitted the determination of the phosphoisotypes of high‐molecular‐mass proteins, such as mTOR (289 kDa), ATM kinase (350 kDa), and 53BP1 (213 kDa).  相似文献   

5.
MEK1, an essential component of the mitogen‐activated protein kinase (MAPK) pathway, is phosphorylated during activation of the pathway; 12 phosphorylation sites have been identified in human MEK1 by MS‐based phosphoproteomic methods. By using Phos‐tag SDS‐PAGE, we found that multiple variants of MEK1 with different phosphorylation states are constitutively present in typical human cells. The Phos‐tag‐based strategy, which makes effective use of existing information on the location of phosphorylation sites, permits quantitative time‐course profiling of MEK1 phosphospecies in their respective phosphorylation states. By subsequent immunoblotting with an anti‐HaloTag antibody, we analyzed a HaloTag‐fused MEK1 protein and 12 potential phosphorylation‐site‐directed mutants of the protein transiently expressed in HEK 293 cells. This strategy revealed that MEK1 is constitutively and mainly phosphorylated at the Thr‐292, Ser‐298, Thr‐386, and Thr‐388 residues in vivo, and that combinations of phosphorylations at these four residues produce at least six phosphorylated variants of MEK1. Like the levels of phosphorylation of the Ser‐218 and Ser‐222 residues by RAF1, which have been well studied, the phosphorylation statuses of Thr‐292, Ser‐298, Thr‐386, and Thr‐388 residues vary widely during activation and deactivation of the MAPK pathway. Furthermore, we demonstrated inhibitor‐specific profiling of MEK1 phosphospecies by using three MEK inhibitors: TAK‐733, PD98059, and U0126.  相似文献   

6.
The sensitivity of Western blotting analysis after Phos‐tag SDS‐PAGE is occasionally inferior to that after normal (Phos‐tag‐free) SDS‐PAGE under similar experimental conditions, possibly as a result of inefficient electrotransfer from the Phos‐tag gel to the blotting membrane. We therefore present tips on improving the efficiency of electrotransfer of proteins in semidry and wet‐tank blotting. When model samples containing several standard phosphoproteins were subjected to semidry blotting, their electrotransfer efficiencies after Phos‐tag SDS‐PAGE were markedly inferior to those of their dephosphorylated counterparts in the same gel. This was ameliorated by immersing the electrophoresed Phos‐tag gel in a transfer buffer containing 1 mM EDTA for 30 min before electroblotting. Similarly, phosphoproteomes in crude cell extracts were inefficiently transferred by semidry blotting, but the efficiencies of their electrotransfer were improved by pretreatment with EDTA. In contrast, the efficiencies of wet‐tank blotting of the same samples were not dependent on the degree of phosphorylation, and the efficiencies of electrotransfer of all proteins from Phos‐tag gels were similar to those from normal gels. In some cases involving the use of a Phos‐tag gel, addition of 0.1% w/v of SDS to the transfer buffer significantly improved the electrotransfer.  相似文献   

7.
To develop a concise proteomic procedure to verify the protein disulfide bond arrangement, non‐reductive trypsin digestion of neuregulin 1‐β1 (176–246), a model disulfide‐containing protein, was assessed by a proteolytic 18O‐labeling analysis. As a result, the commonly used in‐gel tryptic digestion method has been improved for use entirely under neutral pH conditions. With this procedure, the disulfide arrangement of proteins could represent a clinical index candidate in pathological proteomic studies.  相似文献   

8.
Adenosine 5′‐O‐(3‐thiotriphosphate) (ATPγS) has been widely used as a phosphoryl donor to trace protein kinase activities. However, the question remains whether particular kinases accept ATPγS as readily as they accept natural ATP. We investigated the characteristics of several kinase reactions in the presence of ATPγS by using Phos‐tag affinity electrophoresis. The Phos‐tag gel permitted quantitative analysis of thiophosphorylated proteins produced by kinase reactions in vitro and it identified differences in the efficiencies of utilization of ATPγS and ATP in these reactions. Using the method, we evaluated the utility of ATPγS as a phosphoryl donor in studies on bacterial two‐component systems. Histidine kinases accepted ATPγS as readily as they accepted ATP in autophosphorylation reactions. However, downstream phosphotransfer reactions with ATPγS were markedly slower than the corresponding reactions with ATP. In an analysis of the sluggish thiophosphate transfer, we found that detergent‐denatured thiophosphorylated histidine kinases gradually hydrolyzed at the P–N bond, even at neutral pH, during incubation for 24 h, whereas the native form of the thiophosphorylated enzymes were much more stable. Profiling of protein thiophosphorylation by using Phos‐tag affinity electrophoresis might provide new insights into the characteristics of various types of kinase reactions with ATPγS.  相似文献   

9.
A number of factors including low stoichiometry of phosphorylation, ion suppression, and reduced peptide backbone fragmentation interfere with precise identification of proteins in phosphoproteomic analysis by MS. Therefore, enrichment of phosphopeptides is an important process for subsequent mass spectrometric analysis. Here, we have developed a simple and efficient method for phosphopeptides enrichment, which employs a biphasic phosphate‐binding tag (Phos‐tag)/C18 tip consisting of overlaid Phos‐tag on the C18 resin in a pipet tip. The improvement in selectivity for phosphopeptides was achieved by using a 40% ACN solution under the phosphopeptides binding conditions. We also assessed the adequacy of Phos‐tag/C18 tip for quantitative phosphoproteomic analysis using the iTRAQ technology. After protein digestion and subsequent iTRAQ labeling, interfering substances including excess iTRAQ reagent were directly removed by Phos‐tag/C18 tip in a single step. Applying this method, phosphoproteomic analysis of HeLa cells stimulated with tumor necrosis factor ‐α was rapidly and successfully achieved.  相似文献   

10.
Deficiency in insulin secretion and function that characterize type 2 diabetes often requires administration of extraneous insulin, leading to injection‐site amyloidosis. Insulin aggregation at neutral pH is not well understood. Although oligomer formation is believed to play an important role, insulin oligomers have not been fully characterized yet. Here, we elucidate similarities and differences between in vitro insulin aggregation at acidic and neutral pH for a range of insulin concentrations (2.5–100 μM) by using kinetic thioflavin T fluorescence, circular dichroism, atomic force and electron microscopy imaging. Importantly, we characterize the size distribution of insulin oligomers at different assembly stages by the application of covalent cross‐linking and gel electrophoresis. Our results show that at the earliest assembly stage, oligomers comprise up to 40% and 70% of soluble insulin at acidic and neutral pH, respectively. While the highest oligomer order increases with insulin concentration at acidic pH, the opposite tendency is observed at neutral pH, where oligomers up to heptamers are formed in 10 μM insulin. These findings suggest that oligomers may be on‐ and off‐pathway assemblies for insulin at acidic and neutral pH, respectively. Agitation, which is required to induce insulin aggregation at neutral pH, is shown to increase fibril formation rate and fibrillar mass both by an order of magnitude. Insulin incubated under agitated conditions at neutral pH rapidly aggregates into large micrometer‐sized aggregates, which may be of physiological relevance and provides insight into injection‐site amyloidosis and toxic pulmonary aggregates induced by administration of extraneous insulin.  相似文献   

11.
Aims: To present the pairwise comparison of potential mosquito‐pathogenic Bacillus strains based on their SDS‐PAGE protein patterns and to evaluate their characteristic toxicity patterns. Methods and Results: In this work, 20 Bacillus strains were subjected to qualitative toxicity tests against Aedes aegypti and Culex quinquefasciatus larvae. The selected strains were then characterized by SDS‐PAGE protein profiles. The highly heterogeneous multiple protein components of protein patterns were analysed using self‐organizing map (SOM), a ‘visualization and clustering’ tool. Members of mosquitocidal Bacillus species were classified in four distinct clusters, and then toxicity patterns were examined. Cluster (1, 1) comprised of three highly toxic strains of Bacillus sphaericus: SPH88, 1593 and KSD‐4; cluster (1, 2) consisted of two B. sphaericus strains: SSII‐1 and Bsp‐R that showed weak larvicidal activity; cluster (2, 1) constituted two B. sphaericus strains: WHO2297 and ISPC‐5 that possessed moderate toxicity; and cluster (2, 2) contained four B. thuringiensis ssp. israelensis strains: ONR‐60A, HD500, IPS70 and IPS82 belonging to serotype H14 but exhibited moderate to high mosquito larvicidal toxicity. Conclusions: SOM served as a colour‐coded alternate for easy visualization of similarities or dissimilarities between the strains even at the infra subspecies level. Furthermore, characteristic toxicity patterns of Bacillus strains of different clusters were determined. Significance and Impact of the Study: Analysis of electrophoretic protein patterns using SOM provides a better insight into the inter‐relationships of bacterial strains through similarity‐based clustering and pairwise comparison of two strains.  相似文献   

12.
Numerous workflows exist for large‐scale bottom‐up proteomics, many of which achieve exceptional proteome depth. Herein, we evaluated the performance of several commonly used sample preparation techniques for proteomic characterization of HeLa lysates [unfractionated in‐solution digests, SDS‐PAGE coupled with in‐gel digestion, gel‐eluted liquid fraction entrapment electrophoresis (GELFrEE) technology, SCX StageTips and high‐/low‐pH reversed phase fractionation (HpH)]. HpH fractionation was found to be superior in terms of proteome depth (>8400 proteins detected) and fractionation efficiency compared to other techniques. SCX StageTip fractionation required minimal sample handling and was also a substantial improvement over SDS‐PAGE separation and GELFrEE technology. Sequence coverage of the HeLa proteome increased to 38% when combining all workflows, however, total proteins detected improved only slightly to 8710. In summary, HpH fractionation and SCX StageTips are robust techniques and highly suited for complex proteome analysis.  相似文献   

13.
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi‐year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model‐based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well‐controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.  相似文献   

14.
Akashi T  Yamori T 《Proteomics》2007,7(14):2350-2354
A novel SELDI-TOF MS-based method for analyzing phosphoproteins was developed using a series of recombinant wild-type and mutant ribosomal P2 proteins. We demonstrated that the phosphorylation status of the overexpressed proteins in cells was easily and rapidly confirmed using this method. The ribosomal P2 protein contained two phosphorylation sites, which were sequentially phosphorylated in vivo. We also quantitatively detected the phosphoprotein by using SELDI-TOF MS.  相似文献   

15.
He P  Li M  Hu N 《Biopolymers》2005,79(6):310-323
With the isoelectric point at pH 7.4, hemoglobin (Hb) has net positive surface charges at pH 5.0 and overall negative charges at pH 9.0, and is essentially neutral at pH 7.0. The fifth-generation poly(propyleneimine) (PPI) dendrimer is usually positively charged in aqueous solution. The {PPI/Hb}n films under different pH conditions have been successfully fabricated on various solid surfaces by the layer-by-layer assembly technique, and the growth of films was monitored by ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). Not only was the negatively charged Hb at pH 9.0 alternately adsorbed with positively charged PPI onto solid substrates by electrostatic attraction between them, but the positively charged Hb at pH 5.0 was also successfully assembled with like charged PPI into layer-by-layer {PPI/Hb(pH 5.0)}n films. For the latter, the localized electrostatic interaction or the charge reversal of proteins on PPI surface may be the main driving force. For {PPI/Hb(pH 7.0)}n films, however, the hydrophobic/hydrophilic interaction may play a more important role in the assembly, making the amount of adsorbed Hb even less than that of {PPI/Hb(pH 5.0)}n films. For comparison, negatively charged catalase (Cat) at pH 8.0 was used to assemble layer-by-layer films with positive PPI, but {PPI/Cat}n films showed quite different properties from {PPI/Hb}n films. UV-vis and infrared (IR) spectroscopy, QCM, ellipsometry, and voltammetry were utilized to characterize the {PPI/protein}n films. The results suggest that the proteins in the multilayer films retain their near-native structure and display good voltammetric response for heme Fe(III)/Fe(II) redox couples at underlying pyrolytic graphite (PG) electrodes. Electrocatalysis of oxygen and hydrogen peroxide based on direct electrochemistry of heme proteins at {PPI/protein}n film electrodes was also demonstrated.  相似文献   

16.
We developed a highly sensitive chemiluminescent (CL) assay for hydrogen peroxide using 10‐methyl‐9‐(phenoxycarbonyl) acridinium fluorosulfonate (PMAC) that produced chemiluminescence under neutral conditions and applied it to an enzyme immunoassay (EIA). One picomole of hydrogen peroxide could be detected using the optimized PMAC‐CL method and 6.2 × 10‐20 mol β‐d ‐galactosidase (β‐gal) could be detected by combining an indoxyl derivative substrate and the proposed PMAC‐CL method. This highly sensitive CL β‐gal assay was applied to an EIA for thyroid‐stimulating hormone (TSH) using β‐gal as a label enzyme; 0.02–100.0 μU/mL TSH in human serum could be assayed directly and with high reproducibility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The analysis and quantitation of membrane proteins have proved challenging for proteomics. Although several approaches have been introduced to complement gel‐based analysis of intact proteins, the literature is rather limited in comparing major emerging approaches. Peptide fractionation using IEF (OFFGel), strong cation exchange HPLC using a pH gradient (SCX‐pG), and RP HPLC at high pH, have been shown to increase peptide and protein identification over classic MudPIT approaches. This article compares these three approaches for first‐dimensional separation of peptides using a detergent phase (Triton X‐114) enriched membrane fraction from mouse cortical brain tissue. Results indicate that RP at high pH (pH 10) was superior for the identification of more peptides and proteins in comparison to the OFFGel or the SCX‐pG approaches. In addition, gene ontology analysis (GOMiner) revealed that RP at high pH (pH 10) successfully identified an increased number of proteins with “membrane” ontology, further confirming its suitability for membrane protein analysis, in comparison to SCX‐pG and OFFGel techniques.  相似文献   

18.
A variety of white-rot fungi can oxidize textile dyes under sterile conditions; however, an important consideration for their use in treating wastewater containing textile dyes is whether similar degrees of treatment can be achieved under non-sterile conditions. Four strategies were investigated for their potential in optimizing the use of the fungus Trametes versicolor in non-sterile culture for treating wastewater containing the diazo textile dye C.I. Reactive Black 5 (RB5). Three strategies with suspended culture were designed to increase the decolorization activity in suspended culture from a given amount of T. versicolor inoculum based on its tolerance of low pH (pH reduction in medium), production of extracellular enzymes (use of suspended enzymes alone), and its ability to produce enzymes independent of growth (nitrogen limitation in medium). The results showed that reduction of the medium pH to 3 did not suppress bacterial growth, while enzyme production by T. versicolor ceased. The use of the extracellular enzymes alone would allow the decoupling of the process of fungal growth from wastewater treatment; however, the enzyme activity of an enzyme suspension decreased rapidly under non-sterile conditions. The strategy of limiting nitrogen in the medium to suppress bacterial growth has potential together with the fourth strategy, the cultivation of fungi on organic solids to produce inocula for a decolorization process under non-sterile conditions. A high degree of decolorization of RB5 under non-sterile conditions was achieved with T. versicolor grown on grains as sole substrate. The rate of decolorization was dependent on the amount of fungal inoculum used.  相似文献   

19.
A tris(2,2‐bipyridyl)ruthenium(II) (Ru(bpy)32+)‐based electrochemiluminescence (ECL) detection coupled with capillary electrophoresis (CE) method has been established for the sensitive determination of ephedrine for the first time. Under the optimized conditions [ECL detection at 1.15 V, 25 mmol/L phosphate buffer solution (PBS), pH 8.0, as running buffer, separation voltage 12.5 kV, 5 mmol/L Ru(bpy)32+ with 60 mmol/L PBS, pH 8.5, in the detection cell] linear correlation (r = 0.9987) between ECL intensity and ephedrine concentration was obtained in the range 6.0 × 10–8–6.0 × 10–6 g/mL. The detection limit was 4.5 × 10–9 g/mL (S:N = 3). The developed method was successfully applied to the analysis of ephedrine in human urine and the investigation of its interactions with three proteins, including bovine serum albumin (BSA), cytochrome C (Cyt‐C) and myoglobin (Mb). The number of binding sites and the binding constants between ephedrine and BSA, Cyt‐C and Mb were 8.52, 12.60, 10.66 and 1.55 × 104 mol/L, 6.58 × 103 mol/L and 1.59 × 104 mol/L, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Ken Okada 《FEBS letters》2009,583(8):1251-5065
The HO1 and PcyA genes, encoding heme oxygenase-1 (HO1) and phycocyanobilin (PCB):ferredoxin (Fd) oxidoreductase (PcyA), respectively, are required for chromophore synthesis in photosynthetic light-harvesting complexes, photoreceptors, and circadian clocks. In the PCB biosynthetic pathway, heme first undergoes cleavage to form biliverdin. I confirmed that Fd1 induced the formation of a stable and functional HO1 complex by the gel mobility shift assay. Furthermore, analysis by a chemical cross-linking technique designed to detect protein-protein interactions revealed that HO1 and PcyA directly interact with Fd in a 1:2 ratio. Thus, Fd1, a one-electron carrier protein in photosynthesis, drives the phycobilin biosynthetic pathway.

Structured summary

MINT-7014657: Fd1 (uniprotkb:P0A3C9) and HO1 (uniprotkb:Q8DLW1) bind (MI:0407) by comigration in non-denaturing gel electrophoresis (MI:0404)MINT-7014666: HO1 (uniprotkb:Q8DLW1 and Fd1 (uniprotkb:P0A3C9) bind (MI:0407) by cross-linking studies (MI:0030)MINT-7014675: PcyA (uniprotkb:P59288) and Fd1 (uniprotkb:P0A3C9) bind (MI:0407) by cross-linking studies (MI:0030)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号