首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetlands of northern Belize, distributed along a salinity gradient, are strongly phosphorus limited and dominated largely by three species of emergent macrophytes: Eleocharis cellulosa, Cladium jamaicense, and Typha domingensis. We assessed changes in root and sediment phosphatase activities of each species to simultaneous changes of nutrients (N, P) and salinity in a mesocosm experiment. Phosphorus and nitrogen treatment effects on both root and sediment phosphatase were highly significant for all the species, while salinity significantly affected root phosphatase activity in Cladium only. All species showed a significant negative correlation between root phosphatase activity and increasing tissue P content until a threshold of 0.2% P, 0.15% P and 0.12% P in Eleocharis, Cladium and Typha, respectively. There was also a significant negative correlation between soil available P and root and sediment phosphatases in all species. Activity of root phosphatases of Eleocharis and Typha were positively correlated with root tissue N. Both root and sediment phosphatases of all three species were positively correlated with soil available N. The strongest (positive) correlation was found between phoshatase activites and N/P ratios. The results confirmed that these systems are P-limited and that extracellular phosphatases respond to P enrichment by decreasing their activities. Expression of root phosphatase activity by dry root weight, sediment volume, or whole plant biomass gave very different relative results across nutrient treatments and species, suggesting that root phosphatase activities need to be interpreted in a wider context that considers root density.  相似文献   

2.
Increased human‐derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N‐induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N‐induced P limitation. Here we show, using a meta‐analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short‐term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long‐term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short‐ or long‐term studies. Together, these results suggest that N‐induced P limitation in ecosystems is alleviated in the long‐term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.  相似文献   

3.
Human activities have greatly increased the availability of biologically active forms of nutrients [e.g., nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg)] in many soil ecosystems worldwide. Multi‐nutrient fertilization strongly increases plant productivity but may also alter the storage of carbon (C) in soil, which represents the largest terrestrial pool of organic C. Despite this issue is important from a global change perspective, key questions remain on how the single addition of N or the combination of N with other nutrients might affect C sequestration in human‐managed soils. Here, we use a 19‐year old nutrient addition experiment on a permanent grassland to test for nutrient‐induced effects on soil C sequestration. We show that combined NPKMg additions to permanent grassland have ‘constrained’ soil C sequestration to levels similar to unfertilized plots whereas the single addition of N significantly enhanced soil C stocks (N‐only fertilized soils store, on average, 11 t C ha?1 more than unfertilized soils). These results were consistent across grazing and liming treatments suggesting that whilst multi‐nutrient additions increase plant productivity, soil C sequestration is increased by N‐only additions. The positive N‐only effect on soil C content was not related to changes in plant species diversity or to the functional composition of the plant community. N‐only fertilized grasslands show, however, increases in total root mass and the accumulation of organic matter detritus in topsoils. Finally, soils receiving any N addition (N only or N in combination with other nutrients) were associated with high N losses. Overall, our results demonstrate that nutrient fertilization remains an important global change driver of ecosystem functioning, which can strongly affect the long‐term sustainability of grassland soil ecosystems (e.g., soils ability to deliver multiple ecosystem services).  相似文献   

4.
多数研究表明外生菌根真菌能够促进植物养分吸收并提高植物生长,但是对其发生的原因研究较少。本文在室内控制条件下,研究了真菌菌丝分泌N、P相关胞外酶及其受土壤有机碳(胡敏酸)和无机碳(碳酸钙)添加的影响,结果表明:1)3种真菌——松乳菇(Lactarius deliciosus)、变色红菇(Russula integra)、铆钉菇(Gomphidius viscidus)菌丝均能够分泌酸性磷酸酶和蛋白酶,而且多数情况下,MMN培养基培养14 d时,各个酶活性较高,而不同菌的胞外酶活性存在较大的差异,平均值来看铆钉菇酸性磷酸酶活性最低而蛋白酶活性最高,其它2个真菌菌丝的胞外酶活性差异不大;2)添加胡敏酸后,3种菌丝的酸性磷酸酶活性都是随着胡敏酸添加量的增加而逐渐增加;但蛋白酶活性存在差异:松乳菇的蛋白酶活性随着胡敏酸添加量的增加而逐渐增加;变色红菇的蛋白酶活性对胡敏酸不敏感,受其影响不大;铆钉菇的蛋白酶活力在少量的胡敏酸作用下最强,但浓度过高反而抑制其蛋白酶的活性。3)添加碳酸钙后,总体来看,3种菌丝胞外酸性磷酸酶和蛋白酶活性都是添加少量碳酸钙时酶活性最强,随着浓度的增加(如0.1 g),其酶活性开始受到抑制。综上所述,真菌菌丝能够分泌酸性磷酸酶和蛋白酶,这可能是因为这些外生菌根真菌能够促进植物养分吸收和快速生长的原因;有机碳和无机碳的加入可以直接影响真菌菌丝胞外酶的分泌,进而影响土壤内有机磷和有机氮化合物的分解,显示其在土壤碳循环中的作用。  相似文献   

5.
Climate warming could increase rates of soil organic matter turnover and nutrient mineralization, particularly in northern high‐latitude ecosystems. However, the effects of increasing nutrient availability on microbial processes in these ecosystems are poorly understood. To determine how soil microbes respond to nutrient enrichment, we measured microbial biomass, extracellular enzyme activities, soil respiration, and the community composition of active fungi in nitrogen (N) fertilized soils of a boreal forest in central Alaska. We predicted that N addition would suppress fungal activity relative to bacteria, but stimulate carbon (C)‐degrading enzyme activities and soil respiration. Instead, we found no evidence for a suppression of fungal activity, although fungal sporocarp production declined significantly, and the relative abundance of two fungal taxa changed dramatically with N fertilization. Microbial biomass as measured by chloroform fumigation did not respond to fertilization, nor did the ratio of fungi : bacteria as measured by quantitative polymerase chain reaction. However, microbial biomass C : N ratios narrowed significantly from 16.0 ± 1.4 to 5.2 ± 0.3 with fertilization. N fertilization significantly increased the activity of a cellulose‐degrading enzyme and suppressed the activities of protein‐ and chitin‐degrading enzymes but had no effect on soil respiration rates or 14C signatures. These results indicate that N fertilization alters microbial community composition and allocation to extracellular enzyme production without affecting soil respiration. Thus, our results do not provide evidence for strong microbial feedbacks to the boreal C cycle under climate warming or N addition. However, organic N cycling may decline due to a reduction in the activity of enzymes that target nitrogenous compounds.  相似文献   

6.
The kinetics and elemental composition of cellular units that mediate production and respiration are the basis for the metabolic and stoichiometric theories of ecological organization. This theoretical framework extends to the activities of microbial enzymes released into the environment (ecoenzymes) that mediate the release of assimilable substrate from detrital organic matter. In this paper, we analyze the stoichiometry of ecoenzymatic activities in the surface sediments of lotic ecosystems and compare those results to the stoichiometry observed in terrestrial soils. We relate these ecoenzymatic ratios to energy and nutrient availability in the environment as well as microbial elemental content and growth efficiency. The data, collected by US Environmental Protection Agency, include the potential activities of 11 enzymes for 2,200 samples collected across the US, along with analyses of sediment C, N and P content. On average, ecoenzymatic activities in stream sediments are 2–5 times greater per gC than those of terrestrial soils. Ecoenzymatic ratios of C, N and P acquisition activities support elemental analyses showing that microbial metabolism is more likely to be C-limited than N or P-limited compared to terrestrial soils. Ratios of hydrolytic to oxidative activities indicate that sediment organic matter is more labile than soil organic matter and N acquisition is less dependent on humic oxidation. The mean activity ratios of glycosidases and aminopeptidases reflect the environmental abundance of their respective substrates. For both freshwater sediments and terrestrial soils, the mean C:nutrient ratio of microbial biomass normalized to growth efficiency approximates the mean ecoenzymatic C:nutrient activity ratios normalized to environmental C:nutrient abundance. This relationship defines a condition for biogeochemical equilibrium consistent with stoichiometric and metabolic theory.  相似文献   

7.
The transition zone between terrestrial and freshwater habitats is highly dynamic, with large variability in environmental characteristics. Here, we investigate how these characteristics influence the nutritional status and performance of plant life forms inhabiting this zone. Specifically, we hypothesised that: (i) tissue nutrient content differs among submerged, amphibious and terrestrial species, with higher content in submerged species; and (ii) PNUE gradually increases from submerged over amphibious to terrestrial species, reflecting differences in the availability of N and P relative to inorganic C across the land–water ecotone. We found that tissue nutrient content was generally higher in submerged species and C:N and C:P ratios indicated that content was limiting for growth for ca. 20% of plant individuals, particularly those belonging to amphibious and terrestrial species groups. As predicted, the PNUE increased from submerged over amphibious to terrestrial species. We suggest that this pattern reflects that amphibious and terrestrial species allocate proportionally more nutrients into processes of importance for photosynthesis at saturating CO2 availability, i.e. enzymes involved in substrate regeneration, compared to submerged species that are acclimated to lower availability of CO2 in the aquatic environment. Our results indicate that enhanced nutrient loading may affect relative abundance of the three species groups in the land–water ecotone of stream ecosystems. Thus, species of amphibious and terrestrial species groups are likely to benefit more from enhanced nutrient availability in terms of faster growth compared to aquatic species, and that this can be detrimental to aquatic species growing in the land–water ecotone, e.g. Ranunculus and Callitriche.  相似文献   

8.
Here we test the hypotheses that 19 years of simulated pollutant N deposition increases both losses of carbon (C) and the ability of plants to access P from organic material in upland heathland. The grass, Dactylis glomerata, and the dwarf shrub, Calluna vulgaris, were grown in soil containing microbial-derived organic matter labelled with 14C and 33P. We found that both soil and root-surface phosphatase activity increased significantly in response to N deposition. We also found a significant positive relationship between root-surface phosphatase activity and 33P uptake for Calluna, but a negative relationship for Dactylis. Efflux of 14C from the microbial-derived organic matter was strongly dependent on an interaction among plant presence, plant species and N deposition. Our results show that mineralisation of C and P, and subsequent plant uptake of P from organic sources is decoupled. In our experimental conditions, stimulation of P turnover coupled with subsequent plant uptake through up-regulation of root phosphatases is little affected by N addition. However, our data indicate that root-surface phosphatases are likely to be more important for uptake of P derived from organic sources for Calluna than for Dactylis.  相似文献   

9.
Ecosystems globally are undergoing rapid changes in elemental inputs. Because nutrient inputs differently impact high‐ and low‐fertility systems, building a predictive framework for the impacts of anthropogenic and natural changes on ecological stoichiometry requires examining the flexibility in stoichiometric responses across a range of basal nutrient richness. Whether organisms or communities respond to changing conditions with stoichiometric homeostasis or flexibility is strongly regulated by their species‐specific capacity for nutrient storage, relative growth rate, physiological plasticity, and the degree of environmental resource availability relative to organismal demand. Using a meta‐analysis approach, we tested whether stoichiometric flexibility following nutrient enrichment correlates with the relative fertility of terrestrial and aquatic systems or with the initial stoichiometries of the organism or community. We found that regardless of limitation status, N‐fertilization tended to significantly reduce biota C:N and increase N:P, and P fertilization reduced C:P and N:P in both terrestrial and aquatic systems. Further, stoichiometric flexibility in response to fertilization tended to decrease as environmental nutrient richness increased in both terrestrial and aquatic systems. Positive correlations were also detected between the initial biota C:nutrient ratio and stoichiometric flexibility in response to fertilization. Elucidating these relationships between stoichiometric flexibility, basal environmental and biota fertility, and fertilization will increase our understanding of the ecological consequences of ongoing nutrient enrichment across the world.  相似文献   

10.
Climate change has consequences for terrestrial functioning, but predictions of plant responses remain uncertain because of the gaps in the representation of nutrient cycles and C–N–P interactions in ecosystem models. Here, we review the processes that are included in ecosystem models, but focus on coupled C–N–P cycle models. We highlight important plant adjustments to climate change, elevated atmospheric CO2, and/or nutrient limitations that are currently not—or only partially—incorporated in ecosystem models by reviewing experimental studies and compiling data. Plant adjustments concern C:N:P stoichiometry, photosynthetic capacity, nutrient resorption rates, allocation patterns, symbiotic N2 fixation and root exudation (phosphatases, carboxylates) and the effect of root exudation on nutrient mobilization in the soil rhizosphere (P solubilization, biochemical mineralization of organic P and priming effect). We showed that several plant adjustments could be formulated and calibrated using existing experimental data in the literature. Finally, we proposed a roadmap for future research because improving ecosystem models necessitate specific data and collaborations between modelers and empiricists.  相似文献   

11.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

12.
长期施肥对设施菜田土壤酶活性及土壤理化性状的影响   总被引:20,自引:0,他引:20  
Ma NN  Li TL  Wu CC  Zhang EP 《应用生态学报》2010,21(7):1766-1771
利用沈阳农业大学蔬菜长期定位施肥试验田,研究了长期施肥对设施菜田土壤酶活性及土壤理化性状的影响.结果表明:长期施用有机肥或有机肥与氮肥配合施用可明显提高土壤有机质和氮、磷、钾养分含量,改善土壤物理性状,增强土壤转化酶、脲酶和中性磷酸酶的活性;而长期单施氮肥造成土壤pH值和土壤酶活性降低.土壤酶活性与土壤养分因子的相关分析表明,转化酶活性与土壤有机质、全磷含量呈显著正相关;脲酶活性与土壤有机质、全磷和速效钾含量呈极显著正相关,与碱解氮和速效磷含量呈显著正相关;中性磷酸酶活性与土壤有机质、全磷和速效钾含量呈显著正相关;脱氢酶活性与土壤各养分因子均无明显相关性.  相似文献   

13.
The role of mycorrhizal fungi in overcoming nutrient limitation to plant growth by enhancing nutrient acquisition, especially phosphorus (P) and nitrogen (N), is well documented. However, in orchids, the importance of mycorrhizal fungi in nutrient acquisition is not as extensively studied as in other plants. Therefore, an in vitro culture system to study the effects of mycorrhizal association on P and N metabolizing enzymes, viz., acid phosphatase, alkaline phosphatase, nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) in Dendrobium chrysanthum was developed. After 90 days of mycorrhizal treatment, activities of acid phosphatase, alkaline phosphatase, NR, NiR and GS were higher in mycorrhizal plantlets than in control plantlets. The hardened plantlets that were initially treated with mycorrhiza under in vitro conditions also showed higher activities of the enzymes investigated. These mycorrhizal plantlets showed higher survival (96.33 %), shoot length (3.7 cm) and shoot fresh weight (0.359 g) as compared to control after 120 days of hardening. The results presented in this study suggest that mycorrhizal association might have increased the assimilation of P and N in D. chrysanthum plantlets, indicating the importance of mycorrhiza in orchids.  相似文献   

14.
长期施肥对东北黑土酶活性的影响   总被引:11,自引:0,他引:11  
在中国科学院海伦农业生态实验站长期定位试验基础上,研究了长期施用化肥和有机肥对黑土0~20 cm和20~40 cm土层土壤脲酶、磷酸酶、过氧化氢酶和转化酶活性及土壤全碳和全氮的影响.结果表明:长期施用化肥和有机肥均不同程度地提高了0~20 cm和20~40 cm土层土壤磷酸酶、脲酶和转化酶活性,特别是化肥和有机肥配合施用显著增加了该3种土壤酶的活性,增幅分别为43.6%~113.2%、25.9%~79.5%、14.7%~134.4%(0~20 cm)和56.1%~127.2%、14.5%~113.8%、16.2%~207.2%(20~40 cm),长期施用化肥对土壤过氧化氢酶活性影响不大.随着土层深度的增加,土壤磷酸酶、脲酶和转化酶活性均有所降低;长期施用氮肥对土壤脲酶、施用磷肥对土壤磷酸酶有明显的促进作用;长期施肥对土壤全C、全N含量及C/N也有明显影响.  相似文献   

15.
? Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. ? Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N?:?P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N?:?P resorption ratios and soil nutrient availability. ? N?:?P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes 相似文献   

16.
The effect of phosphate starvation on growth and acid phosphatases (APases) localization and activity in oat tissues was investigated. Oat cultivars (Avena sativa L.??Arab, Polar, Szakal) were grown for 1?C3?weeks in complete nutrient medium (+P) and without phosphate (?P). Pi concentration in plant tissues decreased strongly after culturing on ?P medium. Pi deficit reduced shoot growth, stimulated root elongation and increased ratio of root/shoot in all oat cultivars. Pi deficit had a greater impact on growth of oat cv. Polar than other varieties. A decrease in the internal Pi status led to an increase of acid phosphatase activities in extracts from shoots and roots, and in root exudates. The highest activity of secreted APases was observed for oat cv. Arab, during the third week of growth under Pi-deficient conditions. The activity of extracellular APase was high in young, growing zones of roots of ?P plants. Histochemical visualization indicated high activity of APases in the epidermis and vascular tissues of ?P plants. Pi deficiency increased intracellular APase activity in shoot mainly in oat cv. Polar, whereas APase activity in roots was the highest in oat cv. Szakal. Protein extracts from roots and shoots were run on native discontinuous PAGE to determine which isoform(s) may be affected by Pi deficiency. Three major APase isoforms were detected in all oat plants; one was strongly induced by Pi deficit. The studied oat cultivars differed in terms of acclimation to deficiency of phosphate??used various pools of APases to acquire Pi from external or internal sources.  相似文献   

17.
The inhibitory effect of a marine-sponge toxin, okadaic acid, was examined on type 1, type 2A, type 2B and type 2C protein phosphatases as well as on a polycation-modulated (PCM) phosphatase. Of the protein phosphatases examined, the catalytic subunit of type 2A phosphatase from rabbit skeletal muscle was most potently inhibited. For the phosphorylated myosin light-chain (PMLC) phosphatase activity of the enzyme, the concentration of okadaic acid required to obtain 50% inhibition (ID50) was about 1 nM. The PMLC phosphatase activities of type 1 and PCM phosphatase were also strongly inhibited (ID50 0.1-0.5 microM). The PMCL phosphatase activity of type 2B phosphatase (calcineurin) was inhibited to a lesser extent (ID50 4-5 microM). Similar results were obtained for the phosphorylase a phosphatase activity of type 1 and PCM phosphatases and for the p-nitrophenyl phosphate phosphatase activity of calcineurin. The following phosphatases were not affected by up to 10 microM-okadaic acid: type 2C phosphatase, phosphotyrosyl phosphatase, inositol 1,4,5-trisphosphate phosphatase, acid phosphatases and alkaline phosphatases. Thus okadaic acid had a relatively high specificity for type 2A, type 1 and PCM phosphatases. Kinetic studies showed that okadaic acid acts as a non-competitive or mixed inhibitor on the okadaic acid-sensitive enzymes.  相似文献   

18.
Synchronous cultures of HeLa cells were obtained by selective detachment of cells in mitosis and fluctuations in enzyme activity were followed during the subsequent cell cycle. The enzymes measured were alkaline and acid phosphatases and a nuclease active on denatured DNA at alkaline pH (alkaline DNase). Each of these enzymes showed a different pattern of activity in the cell cycle, but a temporal relationship to the DNA synthetic phase was apparent in each case. Treatment of the cultures at the beginning of the cell cycle with 15 mM thymidine did not alter the subsequent pattern of fluctuations in activity of alkaline phosphatase or of acid phosphatase, although DNA synthesis was fully inhibited by this treatment. This indicates that the pattern of activity of some enzymes is not linked to DNA replication. On the other hand, the pattern of fluctuations in the activity of alkaline DNase was abolished by thymidine treatment, and elevation of the activity of this enzyme was observed. These results suggest complex and variable relationships between phases of the cell cycle and enzyme activity, and show that inhibition of DNA synthesis is not a suitable procedure for induction of culture synchrony if enzyme activities are to be studied.  相似文献   

19.
The intensification of land use constitutes one of the main drivers of global change and alters nutrient fluxes on all spatial scales, causing landscape‐level eutrophication and contamination of natural resources. Changes in soil nutrient concentrations are thus indicative for crucial environmental issues associated with intensive land use. We measured concentrations of NO3–N, NH4–N, P, K, Mg, and Ca using 1,326 ion‐exchange resin bags buried in 20 cm depth beneath the main root zone in 150 temperate grasslands. Nutrient concentrations were related to land use intensity, that is, fertilization, mowing, grazing intensities, and plant diversity by structural equation modeling. Furthermore, we assessed the response of soil nutrients to mechanical sward disturbance and subsequent reseeding, a common practice for grassland renewal. Land use intensity, especially fertilization, significantly increased the concentrations of NO3–N, NH4–N, K, P, and also Mg. Besides fertilization (and tightly correlated mowing) intensity, grazing strongly increased NO3–N and K concentrations. Plant species richness decreased P and NO3–N concentrations in soil when grassland productivity of the actual year was statistically taken into account, but not when long‐term averages of productivity were used. Thus, we assume that, in the actual study year, a distinct drought period might have caused the observed decoupling of productivity from fertilization and soil nutrients. Breaking up the grassland sward drastically increased NO3–N concentrations (+146%) but reduced NH4–N, P, and K concentrations, unbalancing soil nutrient stoichiometry and boosting the risk of N leaching. Reseeding the sward after disturbance did not have a short‐term effect on nutrient concentrations. We conclude that renewal of permanent grassland should be avoided as far as possible and future grassland management has to strongly rise the effectiveness of fertilization. Additionally, grassland management might have to increasingly taking care of periods of drought, in which nutrient additions might not increase plant growth but potentially only facilitate leaching.  相似文献   

20.
We tested whether levels of soil available nitrogen (N) and phosphorus (P) control the composition and function of the soil microbial community in a Brown Chernozemic soil on the Canadian Prairie. Soil dissolved organic carbon, N and P, and microbial communities structure (phospholipid fatty acid profile) and function (enzyme activity) were evaluated in the fallow and first wheat (Triticum aestivum L. cv. AC Eatonia) phases of fallow-wheat-wheat rotations where the wheat received soil test recommended rates of mineral N and P fertilizers (+N+P), or where N (?N+P) or P (+N?P) fertilizer use was withheld for 37 years. Differential fertilization modified soil N and P availability, and microbial community structure. Low N level was a major constraint when a rapidly growing wheat crop (heading stage) was drawing on the resource, reducing both plant N uptake and soil microbial biomass-C in ?N+P soils. Available P level in +N?P soils was about half that measured in P-fertilized soils, but P did not limit plant productivity or microbial development at that time. Changes in the microbial community structure seemingly buffered the impact of lower P availability in +N?P soils. Phosphatase activity was not involved, but increased abundance of arbuscular mycorrhizal fungi might be associated with this effect. Low soil N availability explained lower specific denitrification and higher specific nitrogenase activities in ?N+P soil growing wheat. Higher denitrification activity in +N+P soil could be attributed to higher soil C level and fertilization-induced shifts observed in the structure of the soil microbial community. Irrespective of the fertility level of the soil, all microbial communities grew at the relative growth rate of 17% day?1 in a nutrient limitation assay that revealed no C, N or P limitation in these communities. We conclude that mineral fertilization, which modifies soil available N and P fertility, can be a selective force causing structural and functional shifts in the soil microbial community with a resulting impact on soil quality and nutrient fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号