首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
VDACs three isoforms (VDAC1, VDAC2, VDAC3) are integral proteins of the outer mitochondrial membrane whose primary function is to permit the communication and exchange of molecules related to the mitochondrial functions. We have recently reported about the peculiar over-oxidation of VDAC3 cysteines. In this work we have extended our analysis, performed by tryptic and chymotryptic proteolysis and UHPLC/High Resolution ESI-MS/MS, to the other two isoforms VDAC1 and VDAC2 from rat liver mitochondria, and we have been able to find also in these proteins over-oxidation of cysteines. Further PTM of cysteines as succination has been found, while the presence of selenocysteine was not detected. Unfortunately, a short sequence stretch containing one genetically encoded cysteine was not covered both in VDAC2 and in VDAC3, raising the suspect that more, unknown modifications of these proteins exist. Interestingly, cysteine over-oxidation appears to be an exclusive feature of VDACs, since it is not present in other transmembrane mitochondrial proteins eluted by hydroxyapatite. The assignment of a functional role to these modifications of VDACs will be a further step towards the full understanding of the roles of these proteins in the cell.  相似文献   

2.
Voltage-dependant Anion Channels, also known as mitochondrial porins, are pore-forming proteins located in the mitochondrial outer membrane (MOM) that, in addition to forming complexes with other proteins that localize to the MOM, also function as the main conduit for transporting metabolites between the cytoplasm and mitochondria. VDACs are encoded by a multi-member gene family, and the number of isoforms and specific functions of VDACs varies between species. Translating the well-described in vitro characteristics of the VDAC isoforms into in vivo functions has been a challenge, with the generation of animal models of VDAC deficiency providing much of the available information about isoform-specific roles in biology. Here, we review the approaches used to create these insect and mammalian animal models, and the conclusions reached by studying the consequences of loss of function mutations on the genetic, physiologic, and biochemical properties of the resulting models. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

3.
Voltage‐dependent anion channels (VDACs) are the gateway to mitochondrial processes, interlinking the cytosolic and mitochondrial compartments. The mitochondrion acts as a storehouse for cytochrome c, the effector of apoptosis, and hence VDACs become intricately involved in the apoptotic pathway. Isoform 1 of VDAC is abundant in the outer mitochondrial membrane of many cell types, while isoform 2 is the preferred channel in specialized cells including brain and some cancer cells. The primary role of VDACs is metabolite flux. The pro‐ and anti‐apoptotic role of VDAC1 and VDAC2, respectively, are secondary, and are influenced by external factors and interacting proteins. Herein, we focus on the less‐studied VDAC2, and shed light on its unique functions and features. VDAC2, along with sharing many of its functions with VDAC1, such as metabolite and Ca2+ transport, also has many delineating functions. VDAC2 is closely engaged in the gametogenesis and steroidogenesis pathways and in protection from oxidative stress as well as in neurodegenerative diseases like Alzheimer's and epilepsy. A closer examination of the functional pathways of VDACs indicates that the unique functions of VDAC2 are a result of the different interactome of this isoform. We couple functional differences to the structural and biophysical evidence obtained for the VDACs, and present a testament of why the two VDAC isoforms with >90% sequence similarity, are functionally diverse. Based on these differences, we suggest that the VDAC isoforms now be considered as paralogs. An in‐depth understanding of VDAC2 will help us to design better biomolecule targets for cancer and neurodegenerative diseases.  相似文献   

4.
The voltage-dependent anion channel (VDAC) is a pore-forming protein expressed in the outer membrane of eukaryotic mitochondria. Three isoforms of it, i.e., VDAC1, VDAC2, and VDAC3, are known to be expressed in mammals; however, the question as to which is the main isoform in mitochondria is still unanswered. To address this question, we first prepared standard VDACs by using a bacterial expression system and raised various antibodies against them by using synthetic peptides as immunogens. Of the three bacterially expressed VDAC isoforms, VDAC3 showed faster migration in SDS-polyacrylamide gels than VDAC1 and VDAC2, although VDAC2 is longer than VDAC1 and VDAC3, due to a 12-amino acid extension of its N-terminal region. Even with careful structural characterization of the expressed VDACs by LC-MS/MS analysis, serious structural modifications of VDACs causing changes in their migration in SDS-polyacrylamide gels were not detected. Next, immunoreactivities of the raised antibodies toward these bacterially expressed VDAC isoforms were evaluated. Trials to prepare specific antibodies against the three individual VDAC isoforms were not successful except in the case of VDAC1. However, using a synthetic peptide corresponding to the highly conserved region among the three VDACs, we were successful in preparing an antibody showing essentially equal immunoreactivities toward all three VDACs. When mitochondrial outer membrane proteins of various rat tissues were subjected to 2-dimensional electrophoresis followed by immunoblotting with this antibody, six immunoreactive protein spots were detected. These spots were characterized by LC-MS/MS analysis, and the signal intensities among the spots were compared. As a result, the signal intensity of the spot representing VDAC1 was the highest, and thus, VDAC1 was concluded to be the most abundantly expressed of the three VDAC isoforms in mammalian mitochondria.  相似文献   

5.
VDACs (Voltage Dependent Anion selective Channels) are a family of pore-forming proteins discovered in the mitochondrial outer membrane. In the animal kingdom, mammals show a conserved genetic organization of the VDAC genes, corresponding to a group of three active genes. Three VDAC protein isoforms thus exist. From a historically point of view most of the data collected about this protein refer to the VDAC1 isoform, the first to be identified and also the most abundant in the organisms. In this work we compare the information available about the three VDAC isoforms, with a special emphasis upon the human proteins, here considered prototypical of the group, and we try to shed some light on specific functional roles of this apparently redundant group of proteins. A new hypothesis about the VDAC(s) involvement in ROS control is proposed. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

6.
VDACs (Voltage Dependent Anion selective Channels) are a family of pore-forming proteins discovered in the mitochondrial outer membrane. In the animal kingdom, mammals show a conserved genetic organization of the VDAC genes, corresponding to a group of three active genes. Three VDAC protein isoforms thus exist. From a historically point of view most of the data collected about this protein refer to the VDAC1 isoform, the first to be identified and also the most abundant in the organisms. In this work we compare the information available about the three VDAC isoforms, with a special emphasis upon the human proteins, here considered prototypical of the group, and we try to shed some light on specific functional roles of this apparently redundant group of proteins. A new hypothesis about the VDAC(s) involvement in ROS control is proposed. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

7.
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are small channel proteins involved in the translocation of metabolites across the mitochondrial outer membrane. A single channel-forming protein is found in yeast, whereas higher eukaryotes express multiple VDACs, with humans and mice each harboring three distinct channels (VDAC1-3) encoded by separate genes. To begin to assess the functions of each of the three isoforms, the VDAC3 gene was inactivated by targeted disruption in embryonic stem cells. Here we show that mice lacking VDAC3 are healthy, but males are infertile. Although there are normal sperm numbers, the sperm exhibit markedly reduced motility. Structural defects were found in two-thirds of epididymal axonemes, with the most common abnormality being loss of a single microtubule doublet at a conserved position within the axoneme. In testicular sperm, the defect was only rarely observed, suggesting that instability of a normally formed axoneme occurs with sperm maturation. In contrast, tracheal epithelial cilia showed no structural abnormalities. In addition, skeletal muscle mitochondria were abnormally shaped, and activities of the respiratory chain complexes were reduced. These results demonstrate that axonemal defects may be caused by associated nonaxonemal components such as mitochondrial channels and illustrate that normal mitochondrial function is required for stability of the axoneme.  相似文献   

8.
9.
Voltage-dependent anion channels (VDACs, also known as mitochondrial porins) are small pore-forming proteins of the mitochondrial outer membrane found in all eukaryotes. Mammals harbor three distinct VDAC isoforms, with each protein sharing 65-70% sequence identity. Deletion of the yeast VDAC1 gene leads to conditional lethality that can be partially or completely complemented by the mammalian VDAC genes. In vitro, VDACs conduct a variety of small metabolites and in vivo they serve as a binding site for several cytosolic kinases involved in intermediary metabolism, yet the specific physiologic role of each isoform is unknown. Here we show that mouse embryonic stem cells lacking each isoform are viable but exhibit a 30% reduction in oxygen consumption. VDAC1 and VDAC2 deficient cells exhibit reduced cytochrome c oxidase activity, whereas VDAC3 deficient cells have normal activity. These results indicate that VDACs are not essential for cell viability and we speculate that reduced respiration in part reflects decreased outer membrane permeability for small metabolites necessary for oxidative phosphorylation.  相似文献   

10.
Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca(2+) loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca(2+) signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP(3) receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca(2+) signals to mitochondria in apoptosis.  相似文献   

11.
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.  相似文献   

12.
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are a family of small pore-forming proteins of the mitochondrial outer membrane that are found in all eukaryotes. VDACs are thought to play important roles in the regulated flux of metabolites between the cytosolic and mitochondrial compartments, in overall energy metabolism via interactions with cytosolic kinases, and a debated role in programmed cell death (apoptosis). The mammalian genome contains three VDAC loci termed Vdac1, Vdac2, and Vdac3, raising the question as to what function each isoform may be performing. Based upon expression studies of the mouse VDACs in yeast, biophysical differences can be identified but the physiologic significance of these differences remains unclear. Creation of “knockout” cell lines and mice that lack one or more VDAC isoforms has led to the characterization of distinct phenotypes that provide a different set of insights into function which must be interpreted in the context of complex physiologic systems. Functions in male reproduction, the central nervous system and glucose homeostasis have been identified and require a deeper and more mechanistic examination. Annotation of the genome sequence of Drosophila melanogaster has recently revealed three additional genes (CG17137, CG17139, CG17140) with homology to porin, the previously described gene that encodes the VDAC of D. melanogaster. Molecular analysis of these novel VDACs has revealed a complex pattern of gene organization and expression. Sequence comparisons with other insect VDAC homologs suggest that this gene family evolved through a mechanism of duplication and divergence from an ancestral VDAC gene during the radiation of the genus Drosophila. Striking similarities to mouse VDAC mutants can be found that emphasize the conservation of function over a long evolutionary time frame.  相似文献   

13.
Mitochondria, composed of two membranes, play a key role in energy production in eukaryotic cells. The main function of the inner membrane is oxidative phosphorylation, while the mitochondrial outer membrane (MOM) seems to control the energy flux and exchange of various charged metabolites between mitochondria and the cytosol. Metabolites cross MOM via the various isoforms of voltage-dependent anion channel (VDAC). In turn, VDACs interact with some enzymes, other proteins and molecules, including drugs. This work aimed to analyze various literature experimental data related to targeting mitochondrial VDACs and VDAC-kinase complexes on the basis of the hypothesis of generation of the outer membrane potential (OMP) and OMP-dependent reprogramming of cell energy metabolism. Our previous model of the VDAC-hexokinase-linked generation of OMP was further complemented in this study with an additional regulation of the MOM permeability by the OMP-dependent docking of cytosolic proteins like tubulin to VDACs. Computational analysis of the model suggests that OMP changes might be involved in the mechanisms of apoptosis promotion through the so-called transient hyperpolarization of mitochondria. The high concordance of the performed computational estimations with many published experimental data allows concluding that OMP generation under physiological conditions is highly probable and VDAC might function as an OMP-dependent gatekeeper of mitochondria, controlling cell life and death. The proposed model of OMP generation allows understanding in more detail the mechanisms of cancer death resistance and anticancer action of various drugs and treatments influencing VDAC voltage-gating properties, VDAC content, mitochondrial hexokinase activity and VDAC-kinase interactions in MOM.  相似文献   

14.
The voltage-dependent anion channel (VDAC), a major outer mitochondrial membrane protein, is thought to play an important role in energy production and apoptotic cell death in mammalian systems. However, the function of VDACs in plants is largely unknown. In order to determine the individual function of plant VDACs, molecular and genetic analysis was performed on four VDAC genes, VDAC1-VDAC4, found in Arabidopsis thaliana. VDAC1 and VDAC3 possess the eukaryotic mitochondrial porin signature (MPS) in their C-termini, while VDAC2 and VDAC4 do not. Localization analysis of VDAC-green fluorescent protein (GFP) fusions and their chimeric or mutated derivatives revealed that the MPS sequence is important for mitochondrial localization. Through the functional analysis of vdac knockout mutants due to T-DNA insertion, VDAC2 and VDAC4 which are expressed in the whole plant body are important for various physiological functions such as leaf development, the steady state of the mitochondrial membrane potential, and pollen development. Moreover, it was demonstrated that VDAC1 is not only necessary for normal growth but also important for disease resistance through regulation of hydrogen peroxide generation.  相似文献   

15.
Voltage-dependent anion-selective channels (VDACs) are pore-forming proteins allowing the permeability of the mitochondrial outer membrane. The VDAC3 isoform is the least abundant and least active in a complementation assay performed in a yeast strain devoid of porin-1. We swapped the VDAC3 N-terminal 20 amino acids with homologous sequences from the other isoforms. The substitution of the VDAC3 N-terminus with the VDAC1 N-terminus caused the chimaera to become more active than VDAC1. The VDAC2 N-terminus improved VDAC3 activity, though to a lesser extent. The VDAC3 carrying the VDAC1 N-terminus was able to complement the lack of the yeast porin in mitochondrial respiration and in modulation of reactive oxygen species (ROS). This chimaera increased life span, indicating a more efficient bioenergetic metabolism and/or a better protection from ROS.  相似文献   

16.
Mutations in the ubiquitin ligase Parkin and the serine/threonine kinase PINK1 can cause Parkinson disease. Both proteins function in the elimination of defective mitochondria by autophagy. In this process, activation of PINK1 mediates translocation of Parkin from the cytosol to mitochondria by an unknown mechanism. To better understand how Parkin is targeted to defective mitochondria, we purified affinity-tagged Parkin from mitochondria and identified Parkin-associated proteins by mass spectrometry. The three most abundant interacting proteins were the voltage-dependent anion channels 1, 2, and 3 (VDACs 1, 2, and 3), pore-forming proteins in the outer mitochondrial membrane. We demonstrate that Parkin specifically interacts with VDACs when the function of mitochondria is disrupted by treating cells with the proton uncoupler carbonyl cyanide p-chlorophenylhydrazone. In the absence of all three VDACs, the recruitment of Parkin to defective mitochondria and subsequent mitophagy are impaired. Each VDAC is sufficient to support Parkin recruitment and mitophagy, suggesting that VDACs can function redundantly. We hypothesize that VDACs serve as mitochondrial docking sites to recruit Parkin from the cytosol to defective mitochondria.  相似文献   

17.
The voltage-dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and the major transport pathway for a large variety of compounds ranging from ions to large polymeric molecules such as DNA and tRNA. Plant VDACs feature a secondary structure content and electrophysiological properties akin to those of VDACs from other organisms. They however undergo a specific regulation. The general importance of VDAC in plant physiology has only recently emerged. Besides their role in metabolite transport, plant VDACs are also involved in the programmed cell death triggered in response to biotic and abiotic stresses. Moreover, their colocalization in non-mitochondrial membranes suggests a diversity of function. This review summarizes our current understanding of the structure and function of plant VDACs. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

18.
Voltage-dependent anion channel (VDAC) proteins are small, abundant, pore-forming proteins belonging to the eukaryotic mitochondrial porins. At least three different VDAC genes have been identified in vertebrates. VDAC proteins are known to play an essential role in cellular metabolism and in the early stages of apoptosis. A proteomic approach, consisting of two-dimensional gel electrophoresis followed by two-dimensional immunoblotting with anti-VDAC and anti-phosphotyrosine antibodies and by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, was exploited to define the expression pattern of VDAC isoforms in guinea pig brain synaptosomes, both in normoxic and hypoxic conditions. In this way a total of five different VDAC isoforms were identified, as both VDAC1 and VDAC2 were detected in more than one electrophoretic spot. Moreover, VDAC isoforms selectively undergo hypoxia-induced tyrosine phosphorylation, suggesting that tyrosine phosphorylation may contribute to the modulation of VDAC protein function/conformation or interaction with other proteins in hypoxic conditions.  相似文献   

19.
Recently, it was demonstrated that some anti-cancer agents used mitochondrial voltage-dependent anion channels (VDAC1–3 isoforms) as their pharmacological target. VDACs are expressed more highly in cancer cells than normal cells; thus the VDAC-dependent cytotoxic agents can have cancer-selectivity. Furanonaphthoquinones (FNQs) induced caspase-dependent apoptosis via the production of NADH-dependent reactive oxygen species (ROS) by VDAC1. The ROS production and the anti-cancer activity of FNQs were increased by VDAC1 overexpression. Meanwhile, erastin induced RAS-RAF-MEK-dependent non-apoptotic cell death via VDAC2. On the other hand, VDACs were needed for transporting ATP to hexokinase (HK), which was highly expressed in cancer cells. We hypothesized that the high glycolysis might induce up-regulation of VDAC. In this review, we propose that VDACs are novel candidates for effective pharmacological targets of anti-cancer drugs.  相似文献   

20.
Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the ‘unstructured’ conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10′ to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl−/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号