共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin X Kennedy D Peacock A McKinley J Resch CT Fredrickson J Konopka A 《Applied and environmental microbiology》2012,78(3):759-767
Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. 相似文献
2.
W Zac Stephens Adam R Burns Keaton Stagaman Sandi Wong John F Rawls Karen Guillemin Brendan J M Bohannan 《The ISME journal》2016,10(3):644-654
The assembly of resident microbial communities is an important event in animal development; however, the extent to which this process mirrors the developmental programs of host tissues is unknown. Here we surveyed the intestinal bacteria at key developmental time points in a sibling group of 135 individuals of a model vertebrate, the zebrafish (Danio rerio). Our survey revealed stage-specific signatures in the intestinal microbiota and extensive interindividual variation, even within the same developmental stage. Microbial community shifts were apparent during periods of constant diet and environmental conditions, as well as in concert with dietary and environmental change. Interindividual variation in the intestinal microbiota increased with age, as did the difference between the intestinal microbiota and microbes in the surrounding environment. Our results indicate that zebrafish intestinal microbiota assemble into distinct communities throughout development, and that these communities are increasingly different from the surrounding environment and from one another. 相似文献
3.
4.
5.
Soluble microbial products (SMP) are organic compounds produced by activated sludge microorganisms as they degrade substrates. They include by-products of microbial activity, death and lysis. The available literature does not reveal how SMP influence microbial community composition. In this regard, we microscopically studied changes in composition of microbial communities, especially protozoa and metazoa, under the influence of increased as well as reduced levels of SMP. The presence of SMP at high level significantly caused changes in microbial community composition. Microbial species shifted from attached ciliates (12-175 microm) to free-swimming and crawling ciliates (35-330 microm) and then invertebrates, which included rotifers (0.2-1 mm) and nematodes (1-50 mm). The shift of small-size microorganisms to large ones was observed as one of the most significant influences of SMP. Attached ciliates reappeared when we removed the SMP that had accumulated in the bioreactors - we have called this as the resurrection phenomenon of microorganisms. Such rapid changes in microbial community composition were not observed in the experiment with low concentration of SMP. Overall, the results suggest that accumulation of SMP is one of the intrinsic regulatory mechanisms that control viability and dormancy of microbial communities in activated sludge. 相似文献
6.
Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State 总被引:2,自引:1,他引:2
下载免费PDF全文

James K. Fredrickson John M. Zachara David L. Balkwill David Kennedy Shu-mei W. Li Heather M. Kostandarithes Michael J. Daly Margaret F. Romine Fred J. Brockman 《Applied microbiology》2004,70(7):4230-4241
Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ~104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. 相似文献
7.
Carlo L. Seifert Greg P. A. Lamarre Martin Volf Leonardo R. Jorge Scott E. Miller David L. Wagner Kristina J. Anderson-Teixeira Vojtch Novotn 《Oecologia》2020,192(2):501-514
Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest’s vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum. 相似文献
8.
9.
Pei-Yuan Qian Yong Wang On On Lee Stanley C K Lau Jiangke Yang Feras F Lafi Abdulaziz Al-Suwailem Tim Y H Wong 《The ISME journal》2011,5(3):568-518
The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea. 相似文献
10.
Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica 总被引:1,自引:0,他引:1
Lake Bonney is a chemically stratified, permanently ice‐covered Antarctic lake that is unusual because anomalous nutrient concentrations in the east lobe suggest that denitrification occurs in the deep suboxic waters of the west lobe but not the east lobe, resulting in high concentrations of nitrate and nitrite below the east lobe chemocline. Environmental factors that usually control denitrification rates (e.g. organic carbon, nitrate, oxygen) do not appear to explain the nitrate distribution in the east lobe, suggesting that other factors (e.g. trace metals, salts, microbial community structure, etc.) may be involved. In order to explore the potential importance of microbial community composition, samples collected from multiple depths in both lobes were compared on the basis of 16S rRNA gene diversity. 16S rRNA polymerase chain reaction (PCR) clone libraries generated from five depths were subjected to restriction fragment length polymorphism (RFLP), rarefaction, statistical and phylogenetic analyses. Bacterial and archaeal 16S rRNA gene sequences were determined for clones corresponding to unique RFLP patterns. The bacterial community below the chemocline (at 25 m) in the east lobe was the least diverse of the five depths analysed and was compositionally distinct from the communities of the overlying waters. The greatest compositional overlap was observed between 16 and 19 m in the east lobe, while the east lobe at 25 m and the west lobe at 13 and 16 m had relatively distinct communities. Despite very little compositional overlap between the suboxic, hypersaline depths of the east and west lobes (25 m and 16 m, respectively), sequences closely related to the denitrifying Marinobacter strain ELB17 previously isolated from the east lobe were found in both libraries. Most of the Lake Bonney sequences are fairly distinct from those reported from other Antarctic environments. Archaeal 16S rRNA genes were only successfully amplified from the two hypersaline depths analysed, with only one identical halophilic sequence type occurring in both libraries, indicating extremely low archaeal diversity. Overall, microbial community composition varies both between lobes and across depths within lobes in Lake Bonney, reflecting the steep gradients in physical/chemical parameters across the chemocline, as well as the anomalous nutrient chemistry of the system. 相似文献
11.
Soil microbial community structure was investigated by PLFA-analysis in four spruce forests in Norway. The maximum latitudinal distance between the sites was approximately 350 km. Bilberry Vaccinium myrtillus dominated the forest floor vegetation in the study sites, which were selected because of the vegetation type. Soil samples were taken from all four sites under close to 100% homogeneous ground cover of each of two feathermoss species, i.e. Hylocomium splendens or Pleurozium schreberi, respectively. These mosses are ubiquitous in the boreal forest and constitute an abundant component of the forest floor vegetation over vast areas. Since there are no studies on how these mosses affect soil microbial community structure, our first aim was to investigate the effect of moss species on soil microbial communities. Our second aim was to investigate whether microbial communities differ among geographically separated forest sites with similar vegetation across vegetation zones. Soil microbial community structure differed between the study sites, although they appeared similar in terms of vegetation and abiotic soil conditions. Study site was the most important predictor of the variation in the PLFAs, more important than moss species, although there was a tendency for separation of microbial community structure between the two moss species. 相似文献
12.
Silicon-rich soil amendments impact microbial community composition and the composition of arsM bearing microbes 总被引:1,自引:0,他引:1
Plant and Soil - Arsenic (As) cycling in flooded rice paddies is driven by soil microbes which among other transformations can cause conversion between inorganic and organic As species. Silicon... 相似文献
13.
Beecroft NJ Zhao F Varcoe JR Slade RC Thumser AE Avignone-Rossa C 《Applied microbiology and biotechnology》2012,93(1):423-437
The performance and dynamics of the bacterial communities in the biofilm and suspended culture in the anode chamber of sucrose-fed
microbial fuel cells (MFCs) were studied by using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial
16S rRNA genes followed by species identification by sequencing. The power density of MFCs was correlated to the relative
proportions of species obtained from DGGE analysis in order to detect bacterial species or taxonomic classes with important
functional role in electricity production. Although replicate MFCs showed similarity in performance, cluster analysis of DGGE
profiles revealed differences in the evolution of bacterial communities between replicate MFCs. No correlation was found between
the proportion trends of specific species and the enhancement of power output. However, in all MFCs, putative exoelectrogenic
denitrifiers and sulphate-reducers accounted for approximately 24% of the bacterial biofilm community at the end of the study.
Pareto–Lorenz evenness distribution curves extracted from the DGGE patterns obtained from time course samples indicated community
structures where shifts between functionally similar species occur, as observed within the predominant fermentative bacteria.
These results suggest the presence of functional redundancy within the anodic communities, a probable indication that stable
MFC performance can be maintained in changing environmental conditions. The capability of bacteria to adapt to electricity
generation might be present among a wide range of bacteria. 相似文献
14.
Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine 总被引:3,自引:0,他引:3
Inagaki F Takai K Hirayama H Yamato Y Nealson KH Horikoshi K 《Extremophiles : life under extreme conditions》2003,7(4):307-317
Distribution and phylogenetic diversity of microbial communities in hot, deep underground environments in the Hishikari epithermal gold mine, southern part of Kyushu, Japan, were evaluated using molecular phylogenetic analyses. Samples included drilled cores such as andesitic volcanic rock (0.95-1.78 Ma) and the oceanic sedimentary basement rock of Shimanto-Supergroup (100 Ma), as well as geothermal hot aquifer waters directly collected from two different sites: AW-site (71.5 degrees C, pH 6.19) and XW-site (85.0 degrees C, pH 6.80) at a depth of 350 mbls (meters below land surface). Based on PCR-amplified 16S rRNA gene clone analysis, the microbial communities in the drilled cores and the hot aquifer water from the XW-site consisted largely of the 16S rRNA gene sequences, closely related to the sequences often found in marine environments, while the aquifer water from the AW-site contained 16S rRNA gene sequences representing members of Aquificales, thermophilic methanotrophs within the gamma-subdivision of the Proteobacteria and uncultivated strains within the beta-subdivision of Proteobacteria. The cultivable microbial community detected by enrichment cultivation analysis largely matched that detected by the culture-independent molecular analysis. 相似文献
15.
The effects of naphthalene on microbial communities in the bottom boundary layer of the Delaware Bay estuary were investigated in microcosms using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) with oligonucleotide probes. Three days after the addition of naphthalene, rates of bacterial production and naphthalene mineralization were higher than in no-addition controls and than in cases where glucose was added. Analyses using both DGGE and FISH indicated that the bacterial community changed in response to the addition of naphthalene. FISH data indicated that a few major phylogenetic groups increased in response to the glucose addition and especially to the naphthalene addition. DGGE also demonstrated differences in community composition among treatments, with four phylotypes being unique to naphthalene-amended treatments and three of these having 16S rRNA genes similar to known hydrocarbon degraders. The bacterial community in the naphthalene-amended treatment was distinct from the communities in the glucose-amended treatment and in the no-addition control. These data suggest that polycyclic aromatic hydrocarbons may have large effects on microbial community structure in estuaries and probably on microbially mediated biogeochemical processes. 相似文献
16.
Changes in freshwater bacterial community composition during measurements of microbial and community respiration 总被引:2,自引:0,他引:2
Gattuso Jean-Pierre; Peduzzi Sandro; Pizay Marie-Dominique; Tonolla Mauro 《Journal of plankton research》2002,24(11):1197-1206
The respiration rates of a pelagic community and of its microbialfraction (< 1.2 µm) were measured at two depths inthe oxic layer of a meromictic alpine lake (Cadagno, Switzerland)using the oxygen technique. The duration of the incubationswere 12, 24 and 55 h. Bacterioplankton abundance (DAPI counts)and composition (whole cell hybridization using 11 group-specificrRNA-targeted oligonucleotide probes) were measured during theincubations. Respiration generally increased with time, especiallyin the microbial fraction, or remained similar. This resultwas not always consistent with changes in bacterial abundanceand cell volume. The composition of the community also changedduring the incubations. The abundance of ß-Proteobacteriaincreased during the course of all the experiments. These resultsextend the previous conclusions drawn in marine environmentsto fresh waters and demonstrate that, in addition to changesin bacterial abundance, cell volume and biomass, changes inthe taxonomic composition of the bacterial community can occurduring discrete incubations of freshwater planktonic communities. 相似文献
17.
18.
Dutta Avishek Peoples Logan M. Gupta Abhishek Bartlett Douglas H. Sar Pinaki 《Extremophiles : life under extreme conditions》2019,23(4):421-433
Extremophiles - The deep biosphere is often characterized by multiple extreme physical–chemical conditions, of which pressure is an important parameter that influences life but remains less... 相似文献
19.
Microbial diagnostic microarrays (MDMs) are highly parallel hybridization platforms containing multiple sets of immobilized oligonucleotide probes used for parallel detection and identification of many different microorganisms in environmental and clinical samples. Each probe is approximately specific to a given group of organisms. Here we describe the protocol used to develop and validate an MDM method for the semiquantification of a range of functional genes--in this case, particulate methane monooxygenase (pmoA)--and we give an example of its application to the study of the community structure of methanotrophs and functionally related bacteria in the environment. The development and validation of an MDM, following this protocol, takes ~6 months. The pmoA MDM described in detail comprises 199 probes and addresses ~50 different species-level clades. An experiment comprising 24 samples can be completed, from DNA extraction to data acquisition, within 3 d (12-13 h bench work). 相似文献
20.
This study tests the hypothesis that altering the mineral composition of soil influences microbial community structure in a nutrient-deficient soil. Microcosms were established by adding mica (M), basalt (B) and rock phosphate (P) to soil separately, and in combination (MBP), and by planting with Lolium rigidum, Trifolium subterraneum or by leaving unplanted. The effects of mineral and plant treatments on microbial community structure were assessed using automated ribosomal intergenic spacer analysis. Bacterial community structure was significantly affected by both mineral (global R=0.73 and P<0.001) and plant (global R=0.71 and P<0.001) treatments, as was the fungal community structure: mineral (global R=0.65 and P<0.001) and plant (global R=0.65 and P<0.001) treatments. All pairwise comparisons of bacterial and fungal communities between different mineral treatments and between different plant treatments were significantly different (P<0.05). This study has shown that mineral addition to soil microcosms resulted in substantial changes in both bacterial and fungal community structure, dependent on the type of mineral added and the plant species present. These results suggest that the mineral composition of soil may be an important factor influencing the microbial community structure in soil. 相似文献