首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of quantitative trait loci (QTLs) based on anchor markers, especially candidate genes that control a trait of interest, has been noted to increase the power of QTL detection. Since these markers can be scored as co-dominant data, they are also valuable for comparing and integrating the QTL linkage maps from diverse mapping populations. To estimate the position and effects of QTLs linked to oil yield traits in African oil palm, co-dominant microsatellites (SSR) and candidate gene-based sequence polymorphisms were applied to construct a linkage map for a progeny showing large differences in oil yield components. The progeny was genotyped for 97 SSR markers, 93 gene-linked markers, and 12 non-gene-linked SNP markers. From these, 190 segregating loci could be arranged into 31 linkage groups while 12 markers remained unmapped. Using the single marker linkage, interval mapping and multiple QTL methods, 16 putative QTLs on seven linkage groups affecting important oil yield related traits such as fresh fruit bunch yield (FFB), ratio of oil per fruit (OF), oil per bunch (OB), fruit per bunch (FB) and wet mesocarp per fruit (WMF) could be identified in the segregating population with estimated values for explained variance ranging from 12.4 % to 54.5 %. Markers designed from some candidate genes involved in lipid biosynthesis were found to be mapped near significant QTLs for various economic yield traits. Associations between QTLs and potential candidate genes are discussed.  相似文献   

2.
3.
In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the ‘Golden Delicious’ apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies (‘Fuji x Pink Lady’ and ‘Golden Delicious x Braeburn’). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple.  相似文献   

4.
5.
Efficient breeding and selection of high-quality apple cultivars requires knowledge and understanding of the underlying genetics. The availability of genetic linkage maps constructed with molecular markers enables the detection and analysis of major genes and quantitative trait loci contributing to the quality traits of a genotype. A segregating population of the cross between the apple varieties `Fiesta' (syn. `Red Pippin') and `Discovery' has been observed over three years at three different sites in Switzerland and data on growth habit, blooming behaviour, juvenile period and fruit quality has been recorded. QTL analyses were performed, based on a genetic linkage map consisting of 804 molecular markers and covering all 17 apple chromosomes. With the maximum likelihood based interval mapping method, the investigated complex traits could be dissected into a number of QTLs affecting the observed characters. Genomic regions participating in the genetic control of stem diameter, plant height increment, leaf size, blooming time, blooming intensity, juvenile phase length, time of fruit maturity, number of fruit, fruit size and weight, fruit flesh firmness, sugar content and fruit acidity were identified and compared with previously mapped QTLs in apple. Although `Discovery' fruit displayed a higher acid content, both acidity QTLs were attributed to the sweeter parent `Fiesta'. This indicated homozygosity at the acidity loci in `Discovery' preventing their detection in the progeny due to the lack of segregation.  相似文献   

6.
The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.  相似文献   

7.
Genetic control of fruit vitamin C contents   总被引:1,自引:0,他引:1       下载免费PDF全文
An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.  相似文献   

8.
Improving fruit quality of apple varieties is an important but complex breeding goal. Flavour is among the key factors of apple fruit quality but in spite of the analytical and biochemical knowledge about volatiles little is known about the genetic and molecular bases of apple aroma. The aim of this study was to use a saturated molecular linkage map of apple to identify QTLs for aroma compounds such as alcohols, esters and terpenes, but also for a number of unidentified volatile compounds (non-targeted analysis approach). Two parental genetic maps were constructed for the apple cultivars ‘Discovery’ and ‘Prima’ by using mainly AFLP and SSR markers. ‘Discovery’ and ‘Prima’ showed very different volatile patterns, and ‘Discovery’ mostly had the higher volatile concentrations in comparison with the Vf-scab resistant ‘Prima’ which has its origin in the small-fruited apple species Malus floribunda. About 50 putative QTLs for a total of 27 different apple fruit volatiles were detected through interval mapping by using genotypic data of 150 F1 individuals of the mapping population ‘C3’ together with phenotypic data obtained by head-space solid phase microextraction gas chromatography. QTLs for volatile compounds putatively involved in apple aroma were found on 12 out of the 17 apple chromosomes, but they were not evenly dispersed. QTLs were mainly clustered on linkage groups LG 2, 3 and 9. In a first attempt, a LOX (lipoxygenase) candidate gene, putatively involved in volatile metabolism, was mapped on LG 9, genetically associated with a cluster of QTLs for ester-type volatiles. Implications for aroma breeding in apple are discussed.  相似文献   

9.
Cassava (Manihot esculenta Crantz) is a major root crop widely grown in the tropics. Cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis (Xam), is an important disease in Latin America and Africa resulting in significant losses. The preferred control method is the use of resistant genotypes. Mapping expressed sequence tags (ESTs) and determining their co-localization with quantitative trait loci (QTLs) may give additional evidence of the role of the corresponding genes in resistance or defense. Twenty-one EST-derived simple sequence repeats (SSRs) were mapped in 16 linkage groups. ESTs showing similarities with candidate resistance genes or defense genes were also mapped using strategies such as restriction fragment length polymorphisms, cleaved amplified polymorphic sequences, and allele-specific primers. In total, 10 defense-related genes and 2 bacterial artificial chromosomes (BACs) containing resistance gene candidates (RGCs) were mapped in 11 linkage groups. Two new QTLs associated with resistance to Xam strains CIO121 and CIO151 were detected in linkage groups A and U, respectively. The QTL in linkage group U explained 61.6% of the phenotypic variance and was associated with an RGC-containing BAC. No correlation was found between the new EST-derived SSRs or other mapped ESTs and the new or previously reported QTLs.  相似文献   

10.
Quantitative trait loci (QTLs) have been mapped to small intervals along the chromosomes of tomato (Lycopersicon esculentum), by a method we call substitution mapping. The size of the interval to which a QTL can be mapped is determined primarily by the number and spacing of previously mapped genetic markers in the region surrounding the QTL. We demonstrate the method using tomato genotypes carrying chromosomal segments from Lycopersicon chmielewskii, a wild relative of tomato with high soluble solids concentration but small fruit and low yield. Different L. chmielewskii chromosomal segments carrying a common restriction fragment length polymorphism were identified, and their regions of overlap determined using all available genetic markers. The effect of these chromosomal segments on soluble solids concentration, fruit mass, yield, and pH, was determined in the field. Many overlapping chromosomal segments had very different phenotypic effects, indicating QTLs affecting the phenotype(s) to lie in intervals of as little as 3 cM by which the segments differed. Some associations between different traits were attributed to close linkage between two or more QTLs, rather than pleiotropic effects of a single QTL: in such cases, recombination should separate desirable QTLs from genes with undesirable effects. The prominence of such trait associations in wide crosses appears partly due to infrequent reciprocal recombination between heterozygous chromosomal segments flanked by homozygous regions. Substitution mapping is particularly applicable to gene introgression from wild to domestic species, and generally useful in narrowing the gap between linkage mapping and physical mapping of QTLs.  相似文献   

11.
12.
Fire blight is a devastating bacterial disease of rosaceous plants. Its damage to apple production is a major concern, since no existing control option has proven to be completely effective. Some commercial apple varieties, such as 'Florina' and 'Nova Easygro', exhibit a consistent level of resistance to fire blight. In this study, we used an F1 progeny of 'Florina'?× 'Nova Easygro' to build parental genetic maps and identify quantitative trait loci (QTLs) related to fire blight resistance. Linkage maps were constructed using a set of microsatellites and enriched with amplified fragment length polymorphism (AFLP) markers. In parallel, progeny plants were artificially inoculated with Erwinia amylovora strain CFBP 1430 in a quarantine glasshouse. Shoot length measured 7?days after inoculation (DAI) and lesion length measured 7 and 14 DAI were used to calculate the lesion length as a percentage of the shoot length (PLL1 and PLL2, respectively). Percent lesion length data were log10-transformed (log10(PLL)) and used to perform the Kruskal-Wallis test, interval mapping (IM), and multiple QTL mapping (MQM). Two significant fire blight resistance QTLs were detected in 'Florina'. One QTL was mapped on linkage group 10 by IM and MQM; it explained 17.9% and 15.3% of the phenotypic variation by MQM with log10(PLL1) and log10(PLL2) data, respectively. A second QTL was identified on linkage group 5 by MQM with log10(PLL2) data; it explained 10.1% of the phenotypic variation. Genotyping the plants of 'Florina' pedigree with the microsatellites flanking the QTLs showed that the QTLs on linkage groups 5 and 10 were inherited from 'Jonathan' and 'Starking' (a 'Red Delicious' sport mutation), respectively. Other putative QTLs (defined as QTLs with LOD scores above the chromosomal threshold and below the genome-wide threshold) were detected by IM on linkage groups 5 and 9 of 'Nova Easygro'.  相似文献   

13.
Reproductive period (RP) is an important trait of soybean [Glycine max (L.) Merr.] It is closely related to yield, quality and tolerances to environmental stresses. To investigate the inheritance and photoperiod response of RP in soybean, the F(1), F(2), and F(2:3) populations derived from nine crosses were developed. The inheritance of RP was analyzed through the joint segregation analysis. It was shown that the RP was controlled by one major gene plus polygenes. 181 recombinant inbred lines (RILs) generated from the cross of Xuyong Hongdou?×?Baohexuan 3 were further used for QTL mapping of RP under normal conditions across 3 environments, using 127 SSR markers. Four QTLs, designated qRP-c-1, qRP-g-1, qRP-m-1 and qRP-m-2, were mapped on C1, G and M linkage groups, respectively. The QTL qRP-c-1 on the linkage group C1 showed stable effect across environments and explained 25.6, 27.5 and 21.4% of the phenotypic variance in Nanjing 2002, Beijing 2003 and Beijing 2004, respectively. Under photoperiod-controlled conditions, qRP-c-1, and two different QTLs designated qRP-l-1 and qRP-o-1, respectively, were mapped on the linkage groups L and O. qRP-o-1 was detected under SD condition and can explained 10.70% of the phenotypic variance. qRP-c-1 and qRP-l-1 were detected under LD condition and for photoperiod sensitivity. The two major-effect QTLs can explain 19.03 and 19.00% of the phenotypic variance, respectively, under LD condition and 16.25 and 14.12%, respectively, for photoperiod sensitivity. Comparative mapping suggested that the two major-effect QTLs, qRP-c-1 and qRP-l-1, might associate with E8 or GmCRY1a and the maturity gene E3 or GmPhyA3, respectively. These results could facilitate our understanding of the inheritance of RP and provide information on marker-assisted breeding for high yield and wide adaptation in soybean.  相似文献   

14.
Although flowering in mature fruit trees is recurrent, floral induction can be strongly inhibited by concurrent fruiting, leading to a pattern of irregular fruiting across consecutive years referred to as biennial bearing. The genetic determinants of biennial bearing in apple were investigated using the 114 flowering individuals from an F(1) population of 122 genotypes, from a 'Starkrimson' (strong biennial bearer)×'Granny Smith' (regular bearer) cross. The number of inflorescences, and the number and the mass of harvested fruit were recorded over 6 years and used to calculate 26 variables and indices quantifying yield, precocity of production, and biennial bearing. Inflorescence traits exhibited the highest genotypic effect, and three quantitative trait loci (QTLs) on linkage group (LG) 4, LG8, and LG10 explained 50% of the phenotypic variability for biennial bearing. Apple orthologues of flowering and hormone-related genes were retrieved from the whole-genome assembly of 'Golden Delicious' and their position was compared with QTLs. Four main genomic regions that contain floral integrator genes, meristem identity genes, and gibberellin oxidase genes co-located with QTLs. The results indicated that flowering genes are less likely to be responsible for biennial bearing than hormone-related genes. New hypotheses for the control of biennial bearing emerged from QTL and candidate gene co-locations and suggest the involvement of different physiological processes such as the regulation of flowering genes by hormones. The correlation between tree architecture and biennial bearing is also discussed.  相似文献   

15.
A linkage map of garden pea was constructed on the basis of 114 plants (F2 generation) derived from a cross combination Wt10245 x Wt11238. The map, consisting of 204 morphological, isozyme, AFLP, ISSR, STS, CAPS and RAPD markers, was used for interval mapping of quantitative trait loci (QTLs) controlling seed number, pod number, 1000-seed weight, 1000-yield, and seed protein content. Characterization of each QTL included identification of QTL position with reference to the flanking markers, estimation of the part of variance explained by this QTL, and determination of its gene action. The yield-related traits were measured in F2 plants and in F4 recombinant inbred lines (RILs). The interval mapping revealed two to six QTLs per trait, demonstrating linkage to seven pea chromosomes. A total of 37 detected QTLs accounted for 9.1-55.9% of the trait's phenotypic variation and showed different types of gene action. As many as eight and ten QTLs influencing the analysed traits were mapped in linkage groups III and V, respectively, indicating an important role of these regions of the pea genome in the control of yield and seed protein content.  相似文献   

16.
In order to screen for putative candidate genes linked to tomato fruit weight and to sugar or acid content, genes and QTLs involved in fruit size and composition were mapped. Genes were selected among EST clones in the TIGR tomato EST database (http://www.tigr.org/tdb/tgi/lgi/) or corresponded to genes preferentially expressed in the early stages of fruit development. These clones were located on the tomato map using a population of introgression lines (ILs) having one segment of Lycopersicon pennellii (LA716) in a L. esculentum (M82) background. The 75 ILs allowed the genome to be segmented into 107 bins. Sixty-three genes involved in carbon metabolism revealed 79 loci. They represented enzymes involved in the Calvin cycle, glycolysis, the TCA cycle, sugar and starch metabolism, transport, and a few other functions. In addition, seven cell-cycle-specific genes mapped into nine loci. Fourteen genes, primarily expressed during the cell division stage, and 23 genes primarily expressed during the cell expansion stage, revealed 24 and 26 loci, respectively. The fruit weight, sugars, and organic acids content of each IL was measured and several QTLs controlling these traits were mapped. Comparison between map location of QTLs and candidate gene loci indicated a few candidate genes that may influence the variation of sugar or acid contents. Furthermore, the gene/QTL locations could be compared with the loci mapped in other tomato populations.  相似文献   

17.
18.
Zhang  Xiaofei  Jin  Hui  Zhang  Yan  Liu  Dongcheng  Li  Genying  Xia  Xianchun  He  Zhonghu  Zhang  Aimin 《BMC plant biology》2012,12(1):1-16

Background

The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin.

Results

Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17.

Conclusion

We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.  相似文献   

19.
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC1F1 plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs.  相似文献   

20.
The identification of genes involved in variation of peach fruit quality would assist breeders in creating new cultivars with improved fruit quality. Major genes and quantitative trait loci (QTLs) for physical and chemical components of fruit quality have already been detected, based on the peach [Prunus persica (L.) Batsch] cv. Ferjalou Jalousia® (low-acid peach) 2 cv. Fantasia (normally-acid nectarine) F2 intraspecific cross. Our aim was to associate these QTLs to structural genes using a candidate gene/QTL approach. Eighteen cDNAs encoding key proteins in soluble sugar and organic acid metabolic pathways as well as in cell expansion were isolated from peach fruit. A single-strand conformation polymorphism strategy based on specific cDNA-based primers was used to map the corresponding genes. Since no polymorphism could be detected in the Ferjalou Jalousia® 2 Fantasia population, gene mapping was performed on the almond [Prunus amygdalus (P. dulcis)] cv. Texas 2 peach cv. Earlygold F2 interspecific cross from which a saturated map was available. Twelve candidate genes were assigned to four linkage groups of the peach genome. In a second step, the previous QTL detection was enhanced by integrating anchor loci between the Ferjalou Jalousia® 2 Fantasia and Texas 2 Earlygold maps and data from a third year of trait assessment on the Ferjalou Jalousia® 2 Fantasia population. Comparative mapping allowed us to detect a candidate gene/QTL co-location. It involved a cDNA encoding a vacuolar H+-pyrophosphatase (PRUpe;Vp2) that energises solute accumulation, and QTLs for sucrose and soluble solid content. This preliminary result may be the first step in the future development of marker-assisted selection for peach fruit sucrose and soluble solid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号