首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first eukaryotic NER factor that recognizes NER substrates is the heterodimeric XPC-RAD23B protein. The currently accepted hypothesis is that this protein recognizes the distortions/destabilization caused by DNA lesions rather than the lesions themselves. The resulting XPC-RAD23B–DNA complexes serve as scaffolds for the recruitment of subsequent NER factors that lead to the excision of the oligonucleotide sequences containing the lesions. Based on several well-known examples of DNA lesions like the UV radiation-induced CPD and 6–4 photodimers, as well as cisplatin-derived intrastrand cross-linked lesions, it is generally believed that the differences in excision activities in human cell extracts is correlated with the binding affinities of XPC-RAD23B to these DNA lesions. However, using electrophoretic mobility shift assays, we have found that XPC-RAD23B binding affinities of certain bulky lesions derived from metabolically activated polycyclic aromatic hydrocarbon compounds such as benzo[a]pyrene and dibenzo[a,l]pyrene, are not directly, or necessarily correlated with NER excision activities observed in cell-free extracts. These findings point to features of XPC-RAD23B–bulky DNA adduct complexes that may involve the formation of NER-productive or unproductive forms of binding that depend on the structural and stereochemical properties of the DNA adducts studied. The pronounced differences in NER cleavage efficiencies observed in cell-free extracts may be due to differences in the successful recruitment of subsequent NER factors by the XPC-RAD23B–DNA adduct complexes, and/or in the verification step. These phenomena appear to depend on the structural and conformational properties of the class of bulky DNA adducts studied.  相似文献   

2.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

3.
4.
5.
Nucleotide excision repair (NER) is the primary pathway for the removal of DNA adducts that distort the double helix. In the yeast Saccharomyces cerevisiae the RAD6 epistasis group defines a more poorly characterized set of DNA damage response pathways, believed to be distinct from NER. Here we show that the elimination of the DNA minor groove adducts formed by an important class of anticancer antibiotic (CC-1065 family) requires NER factors in S. cerevisiae. We also demonstrate that the elimination of this class of minor groove adduct from the active MFA2 gene depends upon functional Rad18 and Rad6. This is most clear for the repair of adducts on the transcribed strand, where an absolute requirement for Rad6 and Rad18 was seen. Further experiments revealed that a specific RAD6-RAD18-controlled subpathway, the RAD5 branch, mediates these events. Cells disrupted for rad5 are highly sensitive to this minor groove binding agent, and rad5 cells exhibit an in vivo adduct elimination defect indistinguishable from that seen in rad6 and rad18 cells as well as in NER-defective cells. Our results indicate that the RAD5 subpathway may interact with NER factors during the repair of certain DNA adducts.  相似文献   

6.
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.  相似文献   

7.
Z Gu  A Gorin  B E Hingerty  S Broyde  D J Patel 《Biochemistry》1999,38(33):10855-10870
A solution structural study has been undertaken on the aminofluorene-C8-dG ([AF]dG) adduct located at a single-strand-double-strand d(A1-A2-C3-[AF]G4-C5-T6-A7-C8-C9-A10-T11-C12-C13). d(G14-G15-A16-T17-G18-G19-T20- A21-G22-N23) 13/10-mer junction (N = C or A) using proton-proton distance restraints derived from NMR data in combination with intensity-based relaxation matrix refinement computations. This single-strand-double-strand junction models one arm of a replication fork composed of a 13-mer template strand which contains the [AF]dG modification site and a 10-mer primer strand which has been elongated up to the modified guanine with either its complementary dC partner or a dA mismatch. The solution structures establish that the duplex segment retains a minimally perturbed B-DNA conformation with Watson-Crick hydrogen-bonding retained up to the dC5.dG22 base pair. The guanine ring of the [AF]dG4 adduct adopts a syn glycosidic torsion angle and is displaced into the major groove when positioned opposite dC or dA residues. This base displacement of the modified guanine is accompanied by stacking of one face of the aminofluorene ring of [AF]dG4 with the dC5.dG22 base pair, while the other face of the aminofluorene ring is stacked with the purine ring of the nonadjacent dA2 residue. By contrast, the dC and dA residues opposite the junctional [AF]dG4 adduct site adopt distinctly different alignments. The dC23 residue positioned opposite the adduct site is looped out into the minor groove by the aminofluorene ring. The syn displaced orientation of the modified dG with stacking of the aminofluorene and the looped out position of the partner dC could be envisioned to cause polymerase stalling associated with subsequent misalignment leading to frameshift mutations in appropriate sequences. The dA23 residue positioned opposite the adduct site is positioned in the major groove with its purine ring aligned face down over the van der Waals surface of the major groove and its amino group directed toward the T6.A21 base pair. The Hoogsteen edge of the modified guanine of [AF]dG4 and the Watson-Crick edge of dA23 positioned opposite it are approximately coplanar and directed toward each other but are separated by twice the hydrogen-bonding distance required for pairing. This structure of [AF]dG opposite dA at a model template-primer junctional site can be compared with a previous structure of [AF]dG opposite dA within a fully paired duplex [Norman, D., Abuaf, P., Hingerty, B. E., Live, D. , Grunberger, D., Broyde, S., and Patel, D. J. (1989) Biochemistry 28, 7462-7476]. The alignment of the Hoogsteen edge of [AF]dG (syn) positioned opposite the Watson-Crick edge of dA (anti) has been observed for both systems with the separation greater in the case of the junctional alignment in the model template-primer system. However, the aminofluorene ring is positioned in the minor groove in the fully paired duplex while it stacks over the junctional base pair in the template-primer system. This suggests that the syn [AF]dG opposite dA junctional alignment can be readily incorporated within a duplex by a translation of this entity toward the minor groove.  相似文献   

8.
Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.  相似文献   

9.
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these bulky lesions is poorly understood. In order to investigate the effects of DNA adduct structure on NER, three stereoisomeric and conformationally different B[a]P-N(2)-dG lesions were site specifically incorporated into identical 135-mer duplexes and their response to purified NER factors was investigated. Using a permanganate footprinting assay, the NER lesion recognition factor XPC/HR23B exhibits, in each case, remarkably different patterns of helix opening that is also markedly distinct in the case of an intra-strand crosslinked cisplatin adduct. The different extents of helix distortions, as well as differences in the overall binding of XPC/HR23B to double-stranded DNA containing either of the three stereoisomeric B[a]P-N(2)-dG lesions, are correlated with dual incisions catalyzed by a reconstituted incision system of six purified NER factors, and by the full NER apparatus in cell-free nuclear extracts.  相似文献   

10.
Mitomycin C induces both MC-mono-dG and cross-linked dG-adducts in vivo. Interstrand cross-linked (ICL) dG-MC-dG-DNA adducts can prevent strand separation. In Escherichia coli cells, UvrABC repairs ICL lesions that cause DNA bending. The mechanisms and consequences of NER of ICL dG-MC-dG lesions that do not induce DNA bending remain unclear. Using DNA fragments containing a MC-mono-dG or an ICL dG-MC-dG adduct, we found (i) UvrABC incises only at the strand containing MC-mono-dG adducts; (ii) UvrABC makes three types of incisions on an ICL dG-MC-dG adduct: type 1, a single 5′ incision on 1 strand and a 3′ incision on the other; type 2, dual incisions on 1 strand and a single incision on the other; and type 3, dual incisions on both strands; and (iii) the cutting kinetics of type 3 is significantly faster than type 1 and type 2, and all of 3 types of cutting result in producing DSB. We found that UvrA, UvrA + UvrB and UvrA + UvrB + UvrC bind to MC-modified DNA specifically, and we did not detect any UvrB- and UvrB + UvrC–DNA complexes. Our findings challenge the current UvrABC incision model. We propose that DSBs resulted from NER of ICL dG-MC-dG adducts contribute to MC antitumor activity and mutations.  相似文献   

11.
The binding of the anti-tumor antibiotic anthramycin to a defined linear DNA fragment was investigated using both exonuclease III and lambda exonuclease. We show that most of the guanine residues are reactive toward anthramycin; however, several guanine residues showed preferential reactivity for the drug. Using purified UVRA, UVRB and UVRC proteins we present evidence that these three proteins in concert are able to recognize and produce specific strand cleavage flanking anthramycin-DNA adducts. The cleavage of anthramycin adducts by UVRABC nuclease is specific and results in strand breaks at five or six bases 5' and three or four bases 3'-flanking an adduct. At some guanine residues single incisions were observed only on one side of the adduct. The 5' strand breaks observed often occurred as doublet bands on sequencing gels, indicating plasticity in the site of 5' cleavage whereas the 3' cleavage did not show this effect. When DNA fragments modified with elevated levels of anthramycin were used as substrates the activity of the UVRABC nuclease toward the anthramycin adducts decreased. Possible mechanisms for the recognition and specific cleavage of the helix-stabilizing anthramycin DNA adduct and other helix destabilizing lesions by the UVRABC nuclease are discussed.  相似文献   

12.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

13.
T M Reid  M S Lee  C M King 《Biochemistry》1990,29(26):6153-6161
Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by greater than 7-fold to 2.9% and of the AAF adduct by greater than 12-fold to 0.75%. The mutation frequency of the AF adduct was greatly reduced in a uvrA- strain while no mutations occurred with the AAF adduct in this strain. The sequence changes resulting from these treatments were dependent on adduct structure and the presence or absence of uracil on the strand opposite the adducts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Zou Y  Shell SM  Utzat CD  Luo C  Yang Z  Geacintov NE  Basu AK 《Biochemistry》2003,42(43):12654-12661
DNA damage recognition of nucleotide excision repair (NER) in Escherichia coli is achieved by at least two steps. In the first step, a helical distortion is recognized, which leads to a strand opening at the lesion site. The second step involves the recognition of the type of chemical modification in the single-stranded region of DNA during the processing of the lesions by UvrABC. In the current work, by comparing the efficiencies of UvrABC incision of several types of different DNA adducts, we show that the size and position of the strand opening are dependent on the type of DNA adducts. Optimal incision efficiency for the C8-guanine adducts of 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF) was observed in a bubble of three mismatched nucleotides, whereas the same for C8-guanine adduct of 1-nitropyrene and N(2)-guanine adducts of benzo[a]pyrene diol epoxide (BPDE) was noted in a bubble of six mismatched nucleotides. This suggests that the size of the aromatic ring system of the adduct might influence the extent and number of bases associated with the opened strand region catalyzed by UvrABC. We also showed that the incision efficiency of the AF or AAF adduct was affected by the neighboring DNA sequence context, which, in turn, was the result of differential binding of UvrA to the substrates. The sequence context effect on both incision and binding disappeared when a bubble structure of three bases was introduced at the adduct site. We therefore propose that these effects relate to the initial step of damage recognition of DNA structural distortion. The structure-function relationships in the recognition of the DNA lesions, based on our results, have been discussed.  相似文献   

15.
16.
Alekseyev YO  Romano LJ 《Biochemistry》2000,39(34):10431-10438
The presence of benzo[a]pyrene diol epoxide (B[a]PDE) adducts in DNA is known to interfere with DNA replication. Kinetic studies of nucleotide insertion by exonuclease-deficient E. coli DNA polymerase I (Klenow fragment) across from either the (+)-trans- or the (+)-cis-B[a]P-N(2)-dG adduct in the 5'-CGT-3' sequence context indicated that the rate of nucleotide incorporation followed the order: dAMP > dGMP > dTMP > dCMP, which did not correlate with the mutational spectrum observed for these adducts in this sequence in E. coli (mostly G-->A transitions). Interestingly, a kinetic analysis of extension past the adduct showed that, unlike other sequences studied, the primer-template was extended best when dT was positioned at the 3'-terminus of the primer across from either a (+)-trans- or a (+)-cis-B[a]P-N(2)-dG adduct. In contrast, when the (+)-trans-B[a]P-N(2)-dG adduct was positioned in the 5'-TGC-3' sequence context, which gives predominantly G-->T mutations in E. coli, extension was detectable only when dA was positioned across from the adduct. These data provide the first in vitro evidence that may explain why G-->A transitions, rather than the G-->T transversions found in other sequences, are preferred in the 5'-CGT-3' sequence in vivo.  相似文献   

17.
We developed a competition assay to compare, in a quantitative manner, the ability of human nucleotide excision repair (NER) to recognise structurally different forms of DNA damage. This assay uses a NER substrate consisting of M13 double-stranded DNA with a single and uniquely located acetylaminofluorene (AAF) adduct, and measures the efficiency by which multiply damaged plasmid DNA competes for excision repair of the site-directed modification. To validate this assay, we tested competitor DNA containing defined numbers of either AAF adducts or UV radiation products. In both cases, repair of the site-directed NER substrate was inhibited in a damage-specific and dose-dependent manner. We then exploited this competition assay to determine the susceptibility of bulky adozelesin-DNA adducts to human NER.  相似文献   

18.
2D NMR has been used to examine the structure and dynamics of a 12-mer DNA duplex, d(T(1)A(2)G(3)T(4)C(5)A(6)A(7)G(8)G(9)G(10)C(11)A(12))-d(T(13)G(14)C( 15)C(16)C(17)T(18)T(19)G(20)A(21)C(22)T(23)A(24)), containing a 10R adduct at dA(7) that corresponds to trans addition of the N(6)-amino group of dA(7) to (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-(S,R,R,S)-BP DE-2]. This DNA duplex contains the base sequence for the major dA mutational hot spot in the HPRT gene when Chinese hamster V79 cells are given low doses of the highly carcinogenic (+)-(R,S,S,R)-BP DE-2 enantiomer. NOE data indicate that the hydrocarbon is intercalated on the 5'-side of the modified base as has been seen previously for other oligonucleotides containing BP DE-2 (10R)-dA adducts. 2D chemical exchange-only experiments indicate dynamic behavior near the intercalation site especially at the 10R adducted dA, such that this base interconverts between the normal anti conformation and a less populated syn conformation. Ab initio molecular orbital chemical shift calculations of nucleotide and dinucleotide fragments in the syn and anti conformations support these conclusions. Although this DNA duplex containing a 10R dA adduct exhibits conformational flexibility as described, it is nevertheless more conformationally stable than the corresponding 10S adducted duplex corresponding to trans opening of the carcinogenic isomer (+)-(R,S,S, R)-BP DE-2, which was too dynamic to permit NMR structure determination. UV and imino proton NMR spectral observations indicated pronounced differences between these two diastereomeric 12-mer duplexes, consistent with conformational disorder at the adduct site and/or an equilibrium with a nonintercalated orientation of the hydrocarbon in the duplex containing the 10S adduct. The existence of conformational flexibility around adducts may be related to the occurrence of multiple mutagenic outcomes resulting from a single DE adduct.  相似文献   

19.
20.
Helicases are among the first enzymes to encounter DNA damage during DNA processing within the cell and thus are likely to be targets for the adverse effects of DNA lesions induced by environmental chemicals. Here we examined the effect of cis- and trans-opened 3,4-diol 1,2-epoxide (DE) DNA adducts of benzo[c]phenanthrene (BcPh) at N6 of adenine on helicase activity. These adducts are derived from the highly tumorigenic (-)-(1R,2S,3S,4R)-DE as well as its less carcinogenic (+)-(1S,2R,3R,4S)-DE enantiomer in both of which the benzylic 4-hydroxyl group and epoxide oxygen are trans. The hydrocarbon portions of these adducts intercalate into DNA on the 3' or the 5' side of the adducted deoxyadenosine for the 1S- and 1R-adducts, respectively. These adducts inhibited the human Werner (WRN) syndrome helicase activity in a strand-specific and stereospecific manner. In the strand along which WRN translocates, cis-opened adducts were significantly more effective inhibitors than trans-opened isomers, indicating that WRN unwinding is sensitive to adduct stereochemistry. WRN helicase activity was also inhibited but to a lesser extent by cis-opened BcPh DE adducts in the displaced strand independent of their direction of intercalation, whereas inhibition by the trans-opened stereoisomers in the displaced strand depended on their orientation, such that only adducts oriented toward the advancing helicase inhibited WRN activity. A BcPh DE adduct positioned in the helicase-translocating strand did not sequester WRN, nor affect the rate of ATP hydrolysis relative to an unadducted control. Although the Bloom (BLM) syndrome helicase was also inhibited by a cis-opened adduct in a strand-specific manner, this helicase was not as severely affected as WRN. Because BcPh DEs form substantial amounts of deoxyadenosine adducts at dA, their adverse effects on helicases could contribute to genetic damage and cell transformation induced by these DEs. Thus, the unwinding activity of RecQ helicases is sensitive to the strand, orientation, and stereochemistry of intercalated polycyclic aromatic hydrocarbon adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号