首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myo-inositol is present in nature either unmodified or in more complex phosphorylated derivates. Of the latest, the two most abundant in eukaryotic cells are inositol pentakisphosphate (IP(5;)) and inositol hexakisphosphate (phytic acid or IP(6;)). IP(5;) and IP(6;) are the precursors of inositol pyrophosphate molecules that contain one or more pyrophosphate bonds(1). Phosphorylation of IP(6;) generates diphoshoinositolpentakisphosphate (IP(7;) or PP-IP(5;)) and bisdiphoshoinositoltetrakisphosphate (IP(8;) or (PP)(2;)-IP(4;)). Inositol pyrophosphates have been isolated from all eukaryotic organisms so far studied. In addition, the two distinct classes of enzymes responsible for inositol pyrophosphate synthesis are highly conserved throughout evolution(2-4). The IP(6;) kinases (IP(6;)Ks) posses an enormous catalytic flexibility, converting IP(5;) and IP(6;) to PP-IP(4;) and IP(7;) respectively and subsequently, by using these products as substrates, promote the generation of more complex molecules(5,6). Recently, a second class of pyrophosphate generating enzymes was identified in the form of the yeast protein VIP(1;) (also referred as PP-IP(5;)K), which is able to convert IP(6;) to IP(7;) and IP(8;)(7,8). Inositol pyrophosphates regulate many disparate cellular processes such as insulin secretion(9), telomere length(10,11), chemotaxis(12), vesicular trafficking(13), phosphate homeostasis(14) and HIV-1 gag release(15). Two mechanisms of actions have been proposed for this class of molecules. They can affect cellular function by allosterically interacting with specific proteins like AKT(16). Alternatively, the pyrophosphate group can donate a phosphate to pre-phosphorylated proteins(17). The enormous potential of this research field is hampered by the absence of a commercial source of inositol pyrophosphates, which is preventing many scientists from studying these molecules and this new post-translational modification. The methods currently available to isolate inositol pyrophosphates require sophisticated chromatographic apparatus(18,19). These procedures use acidic conditions that might lead to inositol pyrophosphate degradation(20) and thus to poor recovery. Furthermore, the cumbersome post-column desalting procedures restrict their use to specialized laboratories. In this study we describe an undemanding method for the generation, isolation and purification of the products of the IP(6;)-kinase and PP-IP(5;)-kinases reactions. This method was possible by the ability of polyacrylamide gel electrophoresis (PAGE) to resolve highly phosphorylated inositol polyphosphates(20). Following IP(6;)K1 and PP-IP(5;)K enzymatic reactions using IP(6;) as the substrate, PAGE was used to separate the generated inositol pyrophosphates that were subsequently eluted in water.  相似文献   

2.
Luo HR  Saiardi A  Yu H  Nagata E  Ye K  Snyder SH 《Biochemistry》2002,41(8):2509-2515
Diphosphoinositol pentakisphosphate (InsP(7)) and bis-diphosphoinositol tetrakisphosphate (InsP(8)) contain energetic pyrophosphate groups, occur throughout animal and plant kingdoms, and are synthesized by a recently cloned family of inositol hexakisphosphate kinases (InsP(6)Ks). We report that these inositol pyrophosphates mediate homologous DNA recombination in yeast S. cerevisae. Hyperrecombination, caused by altered protein kinase C1 (PKC1), is lost in yeast with deletion of yeast InsP(6)K (yInsP(6)K) and can be restored selectively by catalytically active yeast or mammalian InsP(6)Ks. Inositol pyrophosphates are required for two forms of hyperrecombination that differ in mechanism, suggesting some generalities for actions of inositol pyrophosphates in recombination.  相似文献   

3.
The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP6 or Phytic acid) and its derivative inositol pyrophosphates, IP7 and IP8. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP9 in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP5) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP8 was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba revealed the absence of developmentally-induced synthesis of inositol pyrophosphates, suggesting that the alternative class of enzyme responsible for pyrophosphate synthesis, PP-IP5K, doesn’t’ play a major role in the IP8 developmental increase.  相似文献   

4.
Onnebo SM  Saiardi A 《Cell》2007,129(4):647-649
Inositol pyrophosphates are unique signaling molecules implicated in the regulation of diverse cellular processes. Two new studies by Mulugu et al. (2007) and Lee et al. (2007) extend the biological and metabolic diversity of this class of molecules. They identify yeast Vip1 as a new inositol pyrophosphate synthase and show that the products of Vip1 activity regulate a cyclin/cyclin-dependent kinase complex.  相似文献   

5.

Background

Inositol pyrophosphates are a recently characterized cell signalling molecules responsible for the pyrophosphorylation of protein substrates. Though likely involved in a wide range of cellular functions, the study of inositol pyrophosphates has suffered from a lack of readily available methods for their analysis.

Principal Finding

We describe a novel, sensitive and rapid polyacrylamide gel electrophoresis (PAGE)-based method for the analysis of inositol pyrophosphates. Using 4′,6-diamidino-2-phenylindole (DAPI) and Toluidine Blue we demonstrate the unequivocal detection of various inositol pyrophosphate species.

Conclusion

The use of the PAGE-based method reveals the likely underestimation of inositol pyrophosphates and their signalling contribution in cells when measured via traditional HPLC-based techniques. PAGE-based analyses also reveals the existence of a number of additional, previously uncharacterised pyrophosphorylated inositol reaction products, defining a more complex metabolism associated with the catalytically flexible kinase class responsible for the production of these highly energetic cell signalling molecules.  相似文献   

6.
Diphosphorylated inositol polyphosphates, also referred to as inositol pyrophosphates, are important signaling molecules that regulate critical cellular activities in many eukaryotic organisms, such as membrane trafficking, telomere maintenance, ribosome biogenesis, and apoptosis. In mammals and fungi, two distinct classes of inositol phosphate kinases mediate biosynthesis of inositol pyrophosphates: Kcs1/IP6K- and Vip1/PPIP5K-like proteins. Here, we report that PPIP5K homologs are widely distributed in plants and that Arabidopsis thaliana VIH1 and VIH2 are functional PPIP5K enzymes. We show a specific induction of inositol pyrophosphate InsP8 by jasmonate and demonstrate that steady state and jasmonate-induced pools of InsP8 in Arabidopsis seedlings depend on VIH2. We identify a role of VIH2 in regulating jasmonate perception and plant defenses against herbivorous insects and necrotrophic fungi. In silico docking experiments and radioligand binding-based reconstitution assays show high-affinity binding of inositol pyrophosphates to the F-box protein COI1-JAZ jasmonate coreceptor complex and suggest that coincidence detection of jasmonate and InsP8 by COI1-JAZ is a critical component in jasmonate-regulated defenses.  相似文献   

7.
8.
Luo HR  Huang YE  Chen JC  Saiardi A  Iijima M  Ye K  Huang Y  Nagata E  Devreotes P  Snyder SH 《Cell》2003,114(5):559-572
Inositol phosphates are well-known signaling molecules, whereas the inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (InsP7/IP7) and bis-diphosphoinositol tetrakisphosphate (InsP8/IP8), are less well characterized. We demonstrate physiologic regulation of Dictyostelium chemotaxis by InsP7 mediated by its competition with PtdIns(3,4,5)P3 for binding pleckstrin homology (PH) domain-containing proteins. Chemoattractant stimulation triggers rapid and sustained elevations in InsP7/InsP8 levels. Depletion of InsP7 and InsP8 by deleting the gene for InsP6 kinase (InsP6K/IP6K), which converts inositol hexakisphosphate (InsP6/IP6) to InsP7, causes rapid aggregation of mutant cells and increased sensitivity to cAMP. Chemotaxis is mediated by membrane translocation of certain PH domain-containing proteins via specific binding to PtdIns(3,4,5)P3. InsP7 competes for PH domain binding with PtdIns(3,4,5)P3 both in vitro and in vivo. InsP7 depletion enhances PH domain membrane translocation and augments downstream chemotactic signaling activity.  相似文献   

9.
Inositol (1,4,5) trisphosphate (Ins(1,4,5)P(3)) is a well-known messenger molecule that releases calcium from intracellular stores. Homologues with up to six phosphates have been characterized and recently, homologues with seven or eight phosphate groups, including pyrophosphates, have been identified. These homologues are diphosphoinositol pentakisphosphate (PP-InsP(5)/InsP(7)) and bis(diphospho)inositol tetrakisphosphate (bis-PP-InsP(4)/InsP(8)) [1], the rapid turnover of which [2] is regulated by calcium [2] and adrenergic receptor activity [3]. It has been proposed that the high-energy pyrophosphates might participate in protein phosphorylation [4]. We have purified InsP(6) kinase [5] and PP-InsP(5) kinase [6], both of which display ATP synthase activity, transferring phosphate to ADP. Here, we report the cloning of two mammalian InsP(6) kinases and a yeast InsP(6) kinase. Furthermore, we show that the yeast protein, ArgRIII, is an inositol-polyphosphate kinase that can convert InsP(3) to InsP(4), InsP(5) and InsP(6). We have identified a new family of highly conserved inositol-polyphosphate kinases that contain a newly identified, unique consensus sequence.  相似文献   

10.
Eukaryotes possess numerous inositol phosphate (IP) and diphosphoinositol phosphate (PP-IPs or inositol pyrophosphates) species that act as chemical codes important for intracellular signaling pathways. Production of IP and PP-IP molecules occurs through several classes of evolutionarily conserved inositol phosphate kinases. Here we report the characterization of a human inositol hexakisphosphate (IP6) and diphosphoinositol pentakisphosphate (PP-IP5 or IP7) kinase with similarity to the yeast enzyme Vip1, a recently identified IP6/IP7 kinase (Mulugu, S., Bai, W., Fridy, P. C., Bastidas, R. J., Otto, J. C., Dollins, D. E., Haystead, T. A., Ribeiro, A. A., and York, J. D. (2007) Science 316, 106-109). Recombinant human VIP1 exhibits in vitro IP6 and IP7 kinase activities and restores IP7 synthesis when expressed in mutant yeast. Expression of human VIP1 in HEK293T cells engineered to produce high levels of IP7 results in dramatic increases in bisdiphosphoinositol tetrakisphosphate (PP2-IP4 or IP8). Northern blot analysis indicates that human VIP1 is expressed in a variety of tissues and is enriched in skeletal muscle, heart, and brain. The subcellular distribution of tagged human VIP1 is indicative of a cytoplasmic non-membrane localization pattern. We also characterized human and mouse VIP2, an additional gene product with nearly 90% similarity to VIP1 in the kinase domain, and observed both IP6 and IP7 kinase activities. Our data demonstrate that human VIP1 and VIP2 function as IP6 and IP7 kinases that act along with the IP6K/Kcs1-class of kinases to convert IP6 to IP8 in mammalian cells, a process that has been found to occur in response to various stimuli and signaling events.  相似文献   

11.
Microtubules (MTs) are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.  相似文献   

12.
Integration of inositol phosphate signaling pathways via human ITPK1   总被引:2,自引:0,他引:2  
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical cellular activities. In mammals it has been established that inositol 1,3,4-trisphosphate, produced from inositol 1,4,5-trisphosphate, lies in a branch of the metabolic pathway that is separate from inositol 3,4,5,6-tetrakisphosphate, which inhibits plasma membrane chloride channels. We have determined the molecular mechanism for communication between these two pathways, showing that phosphate is transferred between inositol phosphates via ITPK1-bound nucleotide. Intersubstrate phosphate transfer explains how competing substrates are able to stimulate each others' catalysis by ITPK1. We further show that these features occur in the human protein, but not in plant or protozoan homologues. The high resolution structure of human ITPK1 identifies novel secondary structural features able to impart substrate selectivity and enhance nucleotide binding, thereby promoting intersubstrate phosphate transfer. Our work describes a novel mode of substrate regulation and provides insight into the enzyme evolution of a signaling mechanism from a metabolic role.  相似文献   

13.
Inositol phosphate kinases (IPKs) sequentially phosphorylate inositol phosphates (IPs) on their inositol rings to yield an array of signaling molecules. IPKs must possess the ability to recognize their physiological substrates from among a pool of over 30 cellular IPs that differ in numbers and positions of phosphates. Crystal structures from IPK subfamilies have revealed structural determinants for IP discrimination, which vary considerably between IPKs. However, recent structures of inositol 1,3,4,5,6‐pentakisphosphate 2‐kinase (IPK1) did not reveal how IPK1 selectively recognizes its physiological substrate, IP5, while excluding others. Here, we report that limited proteolysis has revealed the presence of multiple conformational states in the IPK1 catalytic cycle, with notable protection from protease only in the presence of IP. Further, a 3.1‐Å crystal structure of IPK1 bound to ADP in the absence of IP revealed decreased order in residues 110–140 within the N‐lobe of the kinase compared with structures in which IP is bound. Using this solution and crystallographic data, we propose a model for recognition of IP substrate by IPK1 wherein phosphate groups at the 4‐, 5‐, and 6‐positions are recognized initially by the C‐lobe with subsequent interaction of the 1‐position phosphate by Arg130 that stabilizes this residue and the N‐lobe. This model explains how IPK1 can be highly specific for a single IP substrate by linking its interactions with substrate phosphate groups to the stabilization of the N‐ and C‐lobes and kinase activation.  相似文献   

14.
A novel phosphate transfer process involving the non-enzymatic transfer of a phosphate group from inositol pyrophosphates to serine residues in proteins has been recently reported. Semi-empirical calculations at the PM3/SM5.2 level were undertaken to explore the effect of inositol pyrophosphate structure and overall charge on the thermodynamics of this phosphate transfer.  相似文献   

15.
16.
Inositol phosphate action in an intact cell has been investigated by intracellular microinjection of eight inositol phosphate derivatives into Xenopus laevis oocytes. These cells have calcium-regulated chloride channels but do not have a calcium-induced calcium release system. Microinjection of inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,2-(cyclic)-4,5-trisphosphate (cIP3), inositol 1,4,5-trisphosphate (IP3), or inositol 4,5-bisphosphate [(4,5)IP2], open chloride channels to induce a membrane depolarization. However, inositol 1-phosphate (IP1), inositol 1,3,4,5,6-pentakisphosphate (IP5), inositol 1,4-bisphosphate, or inositol 3,4-bisphosphate are unable to induce this depolarization. The depolarization is mimicked by calcium microinjection, inhibited by EGTA coinjection, and is insensitive to removal of extracellular calcium. By means of the depolarization response, the efficacy of various inositol phosphate derivatives are compared. IP3 and cIP3 induce similar half-maximal, biphasic depolarization responses at an intracellular concentration of approximately 90 nM, whereas IP4 induces a mono- or biphasic depolarization at approximately 3400 nM. At concentrations similar to that required for IP3 and cIP3, (4,5)IP2 induces a long-term (greater than 40 min) depolarization. The efficacy (cIP3 = IP3 = (4,5)IP2 much greater than IP4) and action of the various inositol phosphates in an intact cell and their inability to induce meiotic cell division are discussed.  相似文献   

17.
Inositol hexakisphosphate and other inositol high polyphosphates have diverse and critical roles in eukaryotic regulatory pathways. Inositol 1,3,4-trisphosphate 5/6-kinase catalyzes the rate-limiting step in inositol high polyphosphate synthesis in animals. This multifunctional enzyme also has inositol 3,4,5,6-tetrakisphosphate 1-kinase and other activities. The structure of an archetypal family member, from Entamoeba histolytica, has been determined to 1.2 A resolution in binary and ternary complexes with nucleotide, substrate, and product. The structure reveals an ATP-grasp fold. The inositol ring faces ATP edge-on such that the 5- and 6-hydroxyl groups are nearly equidistant from the ATP gamma-phosphate in catalytically productive phosphoacceptor positions and explains the unusual dual site specificity of this kinase. Inositol tris- and tetrakisphosphates interact via three phosphate binding subsites and one solvent-exposed site that could in principle be occupied by 18 different substrates, explaining the mechanisms for the multiple specificities and catalytic activities of this enzyme.  相似文献   

18.
We have characterized the positional specificity of the mammalian and yeast VIP/diphosphoinositol pentakisphosphate kinase (PPIP5K) family of inositol phosphate kinases. We deployed a microscale metal dye detection protocol coupled to a high performance liquid chromatography system that was calibrated with synthetic and biologically synthesized standards of inositol pyrophosphates. In addition, we have directly analyzed the structures of biological inositol pyrophosphates using two-dimensional 1H-1H and 1H-31P nuclear magnetic resonance spectroscopy. Using these tools, we have determined that the mammalian and yeast VIP/PPIP5K family phosphorylates the 1/3-position of the inositol ring in vitro and in vivo. For example, the VIP/PPIP5K enzymes convert inositol hexakisphosphate to 1/3-diphosphoinositol pentakisphosphate. The latter compound has not previously been identified in any organism. We have also unequivocally determined that 1/3,5-(PP)2-IP4 is the isomeric structure of the bis-diphosphoinositol tetrakisphosphate that is synthesized by yeasts and mammals, through a collaboration between the inositol hexakisphosphate kinase and VIP/PPIP5K enzymes. These data uncover phylogenetic variability within the crown taxa in the structures of inositol pyrophosphates. For example, in the Dictyostelids, the major bis-diphosphoinositol tetrakisphosphate is 5,6-(PP)2-IP4 ( Laussmann, T., Eujen, R., Weisshuhn, C. M., Thiel, U., Falck, J. R., and Vogel, G. (1996) Biochem. J. 315, 715-725 ). Our study brings us closer to the goal of understanding the structure/function relationships that control specificity in the synthesis and biological actions of inositol pyrophosphates.  相似文献   

19.
Addition of the guanine nucleotide analogue guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to [3H]inositol-labeled NRK cell homogenates resulted in rapid breakdown of cellular polyphosphoinositides. GTP gamma S stimulated phospholipase C, resulting in a more than 4-fold increase in the hydrolysis rates of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bis(phosphate) (PIP2). No significant effect of GTP gamma S on direct phosphatidylinositol (PI) hydrolysis was detected. There was an increase in water-soluble inositols, with inositol tris(phosphate) (IP3) levels increasing at least 10 times over the decrease seen in PIP2, indicating that PIP kinase activity was also accelerated following GTP gamma S addition. Inositol 1,4,5-tris(phosphate) peaked rapidly after GTP gamma S addition (less than 2 min) while inositol 1,3,4-tris-(phosphate) was produced more slowly and leveled off after approximately 10 min. The differential equations describing conversion between intermediates in the PI turnover pathway were solved and fitted to data obtained from both [3H]inositol and [32P]phosphate fluxes by nonlinear least-squares analysis. GTP gamma S effects on the pseudo-first-order rate constants for the lipase, kinase, and phosphatase steps were determined from the analysis. From these measurements it can be estimated that, in the presence of GTP gamma S and calcium buffered to 130 nM, hydrolysis of PIP2 accounts for at least 10 times as much diacylglycerol as direct PI breakdown despite the 100-fold excess of PI over PIP2. From the kinetic model it is predicted that small changes in the activities of PI and PIP kinases can have large but different effects on the level of IP3 and diacylglycerol following GTP gamma S addition. These results argue that regulation of PI and PIP kinases may be important for determining both cellular IP3 and diacylglycerol levels.  相似文献   

20.
Inositol pyrophosphate diphosphoinositol pentakisphosphate is ubiquitously present in mammalian cells and contains highly energetic pyrophosphate bonds. We have previously reported that inositol hexakisphosphate kinase type 2 (InsP(6)K2), which converts inositol hexakisphosphate to inositol pyrophosphate diphosphoinositol pentakisphosphate, mediates apoptotic cell death via its translocation from the nucleus to the cytoplasm. Here, we report that InsP(6)K2 is localized mainly in the cytoplasm of lymphoblast cells from patients with Huntington disease (HD), whereas this enzyme is localized in the nucleus in control lymphoblast cells. The large number of autophagosomes detected in HD lymphoblast cells is consistent with the down-regulation of Akt in response to InsP(6)K2 activation. Consistent with these observations, the overexpression of InsP(6)Ks leads to the depletion of Akt phosphorylation and the induction of cell death. These results suggest that InsP(6)K2 activation is associated with the pathogenesis of HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号