首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. By using [(18)O]water it was demonstrated that l-serine O-sulphate undergoes C-O cleavage during enzyme-catalysed degradations. 2. C-O cleavage of substrate also occurs under the agency of alkali and pyridoxal phosphate, but, as expected, acid-catalysed degradation involves S-O scission. 3. Aminoacrylate was identified as an intermediate in the enzyme-catalysed degradation of l-serine O-sulphate.  相似文献   

2.
Human cystathionine beta-synthase is a pyridoxal 5'-phosphate enzyme containing a heme binding domain and an S-adenosyl-l-methionine regulatory site. We have investigated by single crystal microspectrophotometry the functional properties of a mutant lacking the S-adenosylmethionine binding domain. Polarized absorption spectra indicate that oxidized and reduced hemes are reversibly formed. Exposure of the reduced form of enzyme crystals to carbon monoxide led to the complete release of the heme moiety. This process, which takes place reversibly and without apparent crystal damage, facilitates the preparation of a heme-free human enzyme. The heme-free enzyme crystals exhibited polarized absorption spectra typical of a pyridoxal 5'-phosphate-dependent protein. The exposure of these crystals to increasing concentrations of the natural substrate l-serine readily led to the formation of the key catalytic intermediate alpha-aminoacrylate. The dissociation constant of l-serine was found to be 6 mm, close to that determined in solution. The amount of the alpha-aminoacrylate Schiff base formed in the presence of l-serine was pH independent between 6 and 9. However, the rate of the disappearance of the alpha-aminoacrylate, likely forming pyruvate and ammonia, was found to increase at pH values higher than 8. Finally, in the presence of homocysteine the alpha-aminoacrylate-enzyme absorption band readily disappears with the concomitant formation of the absorption band of the internal aldimine, indicating that cystathionine beta-synthase crystals catalyze both beta-elimination and beta-replacement reactions. Taken together, these findings demonstrate that the heme moiety is not directly involved in the condensation reaction catalyzed by cystathionine beta-synthase.  相似文献   

3.
Cytosol preparations of rat liver and kidney were examined for their ability to transfer sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to p-hydroxyphenylpyruvic acid. Little activity towards this substrate was observed, and the main product detected in the reaction mixtures was identified as p-hydroxybenzyl alcohol O-sulphate. This was not formed from p-hydroxybenzaldehyde, a spontaneous oxidation product of p-hydroxyphenylpyruvic acid, by sulphation followed by a rapid enzyme-catalysed reduction of the intermediate phydroxybenzaldehyde O-sulphate. This product was formed mainly by this sequence of reactions, but the reverse, reduction followed by sulphation, also appeared possible. p-Hydroxybenzyl alcohol itself was very readily sulphated by both preparations, and the liver also produced a sulpho-conjugate of homogentisic acid. These observations are important in calculating the turnover of L-tyrosine O-sulphate in the mammalian system, and establish that p-hydroxyphenylpyruvic acid O-sulphate is an end product of its metabolism, rather than an intermediate in its synthesis by reversed transamination.  相似文献   

4.
1. During the enzyme-catalysed degradation of l-serine O-sulphate no exchange occurs between the hydrogen atom attached to the alpha-carbon atom of the substrate and the tritiated water of the incubation medium. 2. The participation of an intermediate carbanion has been demonstrated in the degradation by performing the reaction in the presence of tetranitromethane. 3. Photo-oxidation of the enzyme in the presence of Rose Bengal led to a rapid inactivation of enzyme with the concomitant loss of four histidine residues/molecule. 4. Rose Bengal was also a non-competitive inhibitor of the enzyme.  相似文献   

5.
D-serine dehydratase (DSD) catalyses the conversion of d-serine to pyruvate and ammonia. d-Serine is a physiological modulator of glutamate neurotransmission in vertebrate brains. In mammals d-serine is degraded by d-amino-acid oxidase, whereas in chicken brain it is degraded by DSD, as we have recently demonstrated [Tanaka et al. (2007) Anal. Biochem. 362, 83-88]. To clarify the roles of DSD in avian species, we purified DSD from chicken kidney. The purified enzyme was a heterodimer consisting of subunits separable by SDS-PAGE but with identical N-terminal amino acid sequences. The prominent absorption at 416 nm and the inhibition of the enzyme both by hydroxylamine and by aminooxyacetate suggested that the enzyme contains pyridoxal 5'-phosphate as a cofactor. The enzyme showed the highest specificity to d-serine: the k(cat)/K(m) values of DSD for d-serine, d-threonine and l-serine were 6.19 x 10(3), 164 and 16 M(-1)s(-1), respectively. DSD was found immunohistochemically in the proximal tubules of the chicken kidney. Judging from the amino acid sequence deduced from the cDNA, chicken DSD is a homologue of cryptic DSD from Burkholderia cepacia and low-specificity d-threonine aldolase from Arthrobacter sp. strain DK-38, all of which have a cofactor binding motif of PHXK(T/A) in their N-terminal portions.  相似文献   

6.
1. The bacterial distribution of alanine dehydrogenase (L-alanine:NAD+ oxidoreductase, deaminating, EC 1.4.1.1) was investigated, and high activity was found in Bacillus species. The enzyme has been purified to homogeneity and crystallized from B. sphaericus (IFO 3525), in which the highest activity occurs. 2. The enzyme has a molecular weight of about 230 000, and is composed of six identical subunits (Mr 38 000). 3. The enzyme acts almost specifically on L-alanine, but shows low amino-acceptor specificity; pyruvate and 2-oxobutyrate are the most preferable substrates, and 2-oxovalerate is also animated. The enzyme requires NAD+ as a cofactor, which cannot be replaced by NADP+. 4. The enzyme is stable over a wide pH range (pH 6.0--10.0), and shows maximum reactivity at approximately pH 10.5 and 9.0 for the deamination and amination reactions, respectively. 5. Alanine dehydrogenase is inhibited significantly by HgCl2, p-chloromercuribenzoate and other metals, but none of purine and pyrimidine bases, nucleosides, nucleotides, flavine compounds and pyridoxal 5'-phosphate influence the activity. 6. The reductive amination proceeds through a sequential ordered ternary-binary mechanism. NADH binds first to the enzyme followed by ammonia and pyruvate, and the products are released in the order of L-ALANINE AND NAD+. The Michaelis constants are as follows: NADH (10 microM), ammonia (28.2 mM), pyruvate (1.7 mM), L-alanine (18.9 mM) and NAD+ (0.23 mM). 7. The pro-R hydrogen at C-4 of the reduced nicotinamide ring of NADH is exclusively transferred to pyruvate; the enzyme is A-stereospecific.  相似文献   

7.
Fermentative production of l-serine from glycine by Corynebacterium glycinophilum AJ-3413, an auxotrophic mutant of Leu and Met with increased productivity of l-serine using a one liter jar fermentor was carried out and the properties of serine hydroxymethyltransferase (SHMT), a key enzyme in l-serine synthesis, of the parental strain AJ-3170 were investigated. SHMT was effectively induced by the addition of glycine to the medium at an early stage of cultivation. Under optimal conditions, AJ-3413 produced 16.0 g/l of l-serine from 30 g/l of glycine with a molar yield of 38%. The partially purified SHMT catalyzed the l-allo-threonine degradation in addition to l-serine degradation, but could not catalyze l-threonine degradation. This enzyme showed an absolute tetrahydrofolic acid requirement for l-serine degradation to glycine and formaldehyde, but not for l-allo-threonine degradation. Pyridoxal 5′-phosphate appeared to be required for enzyme activity. The Km values for glycine and formaldehyde in l-serine synthesis, and for l-serine in l-serine degradation were 1.85, 0.29 and 1.64 mM, respectively.  相似文献   

8.
Bilophila wadsworthia RZATAU is a Gram-negative bacterium which converts the sulfonate taurine (2-aminoethanesulfonate) to ammonia, acetate and sulfide in an anaerobic respiration. Taurine:pyruvate aminotransferase (Tpa) catalyses the initial metabolic reaction yielding alanine and sulfoacetaldehyde. We purified Tpa 72-fold to apparent homogeneity with an overall yield of 89%. The purified enzyme did not require addition of pyridoxal 5'-phosphate, but highly active enzyme was only obtained by addition of pyridoxal 5'-phosphate to all buffers during purification. SDS/PAGE revealed a single protein band with a molecular mass of 51 kDa. The apparent molecular mass of the native enzyme was 197 kDa as determined by gel filtration, which indicates a homotetrameric structure. The kinetic constants for taurine were: Km = 7.1 mM, Vmax = 1.20 nmol.s-1, and for pyruvate: Km = 0.82 mM, Vmax = 0.17 nmol.s-1. The purified enzyme was able to transaminate hypotaurine (2-aminosulfinate), taurine, beta-alanine and with low activity cysteine and 3-aminopropanesulfonate. In addition to pyruvate, 2-ketobutyrate and oxaloacetate were utilized as amino group acceptors. We have sequenced the encoding gene (tpa). It encoded a 50-kDa peptide, which revealed 33% identity to diaminopelargonate aminotransferase from Bacillus subtilis.  相似文献   

9.
Methylation of a calf thymus DNA substrate by dimethyl sulphate (DMS) leads to an inhibition of deoxyribonuclease II activity which is gradually lost with time. The extent of this initial inhibition is linearly related to the amount of methylated products in DNA and quantitatively similar effects were found when the enzyme was used under either acid or neutral conditions. Deoxyribonuclease II was shown to produce 3'-phosphate termini under both acid and neutral conditions and thus, irrespective of the ionic conditions for the action of this enzyme in vivo the effects demonstrated here are of potential significance. Local denaturation of the methylated DNA may be partly responsible for these inhibitory effects but it is likely that the methyl purines also play a more direct role.  相似文献   

10.
Triton X-100 extracts of rat brain microsomal fraction catalyse the formation of sulphogalactosyldiacylglycerol from galactosyldiacylglycerol and adenosine 3'-phosphate 5'-sulphatophosphate. Of the various subcellular fractions of brain assayed, the microsomal fraction contained most (79%) of the adenosine 3'-phosphate 5'-sulphatophosphate-galactosyldiacylglycerol sulphotransferase activity. The enzyme activity was stimulated by Triton X-100 and showed linearity with increasing time, concentrations of enzyme and added substrates. ATP and KF prolonged the linearity of the activity with time, but ATP had an overall inhibitory effect on the sulphotransferase. Both ATP and KF inhibit the degradation of adenosine 3'-phosphate 5'-sulphatophosphate, which probably causes the increased linearity of the sulphotransferase reaction with time. The enzyme preparation did not catalyse the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to either cholesterol or galabiosyldiacylglycerol (galactosylgalactosyldiacylglycerol). Significant differences between the formation of sulphogalactosyldiacylglycerol and cerebroside sulphate catalysed by the same enzyme preparation were noted. ATP and Mg(2+) strongly inhibit the formation of sulphogalactosyldiacylglycerol but equally strongly stimulate the synthesis of cerebroside sulphate. The apparent K(m) for galactosyldiacylglycerol is 200mum, and that for cerebroside is 45mum. Galactosyldiacylglycerol and cerebroside are mutually inhibitory toward the synthesis of sulphated derivatives of each. These data do not necessarily lead to the conclusion that two sulphotransferases are present, but they do indicate a possible means of controlling the synthesis of these two sulpholipids.  相似文献   

11.
D-Serine dehydratase [EC 4.2.1.14] was purified from a strain of Klebsiella pneumoniae 140-fold from crude extract with a yield of 5%. This enzyme catalyzed formation of pyruvate and ammonia not only from D-serine but also from L-serine, and also catalyzed the formation of alpha-ketobutyrate and ammonia from D-threonine. Km values for D-serine, L-serine, and D-threonine were 2.8 mM, 20 mM, and 3.6 mM, respectively. Km for pyridoxal 5'-phosphate was 2.5 micron. The molecular weight was estimated to be 46,000 by Sephadex G-150 gel filtration and 40,000 by SDS-polyacrylamide gel electrophoresis. This enzyme was inducible by D-serine. Induction by casamino acids appeared to depend on the presence of D-serine.  相似文献   

12.
The effect of introducing methyl groups into DNA substrates was studied by using the spleen exonuclease (EC 3.1.4.1), an enzyme which hydrolyses oligonucleotides in a sequential manner by splitting off 3'-phosphomononucleotides starting from the 5'-hydroxyl terminus. Analyses of oligodeoxyribonucleotide 3'-phosphate substrates after reaction in vitro with dimethyl sulphate demonstrated that the resultant methylation pattern differed from the previously found for native DNA, particularly with respect to the relative amounts of 1- and 3-methyladenine produced. Although after treatment with increasing amounts of dimethyl sulphate the substrate became progressively resistant to degradation by the exonuclease, the methylation products themselves were only partially responsible for the observed inhibition of enzyme activity. The incomplete degradation encountered was apparently due to the presence of apurinic sites, which arose as secondary lesions after the spontaneous release of the labile alkyl purines from the methylated substrate. Inhibition of enzyme activity appeared to be competitive, being characterized by constant values for apparent Vmax, and increased values for apparent Km. the interpretation of this, however, is complicated by the complex nature of the substrate, and these aspects are considered in some detail.  相似文献   

13.
Alanine dehydrogenase [L-alanine:NAD+ oxidoreductase (deaminating), EC 1.4.1.4.] catalyses the reversible oxidative deamination of L-alanine to pyruvate and, in the anaerobic bacterium Bilophila wadsworthia RZATAU, it is involved in the degradation of taurine (2-aminoethanesulfonate). The enzyme regenerates the amino-group acceptor pyruvate, which is consumed during the transamination of taurine and liberates ammonia, which is one of the degradation end products. Alanine dehydrogenase seems to be induced during growth with taurine. The enzyme was purified about 24-fold to apparent homogeneity in a three-step purification. SDS-PAGE revealed a single protein band with a molecular mass of 42 kDa. The apparent molecular mass of the native enzyme was 273 kDa, as determined by gel filtration chromatography, suggesting a homo-hexameric structure. The N-terminal amino acid sequence was determined. The pH optimum was pH 9.0 for reductive amination of pyruvate and pH 9.0-11.5 for oxidative deamination of alanine. The apparent Km values for alanine, NAD+, pyruvate, ammonia and NADH were 1.6, 0.15, 1.1, 31 and 0.04 mM, respectively. The alanine dehydrogenase gene was sequenced. The deduced amino acid sequence corresponded to a size of 39.9 kDa and was very similar to that of the alanine dehydrogenase from Bacillus subtilis.  相似文献   

14.
N F Phillips  N H Goss  H G Wood 《Biochemistry》1983,22(10):2518-2523
Pyruvate, phosphate dikinase from Bacteroides symbiosus is strongly inhibited by low concentrations of pyridoxal 5'-phosphate. The inactivation follows pseudo-first-order kinetics over an inhibitor concentration range of 0.1-2 mM. The inactivation is highly specific since pyridoxine and pyridoxamine 5'-phosphate, analogues of pyridoxal 5'-phosphate, which lack an aldehyde group, caused little or no inhibition even at high concentrations. The unreduced dikinase-pyridoxal 5'-phosphate complex displays an absorption maxima near 420 nm, typical for Schiff base formation. Following reduction of the Schiff base with sodium borohydride, N6-pyridoxyllysine was identified in the acid hydrolysate. When the enzyme was incubated in the presence of pyridoxal 5'-phosphate and reducing agent, the ATP/AMP, Pi/PPi, and pyruvate/phosphoenolpyruvate isotopic exchange reactions were inhibited to approximately the same extent, suggesting that the modification of the lysyl moiety causes changes in the enzyme that affect the reactivity of the pivotal histidyl residue. Phosphorylation of the histidyl group appears to prevent the inhibitor from attacking the lysine residue. On the other hand, addition of pyridoxal 5'-phosphate to the pyrophosphorylated enzyme promotes release of the pyrophosphate and yields the free enzyme which is subject to inhibition.  相似文献   

15.
The Saccaromices cerevisiae D-serine dehydratase is a pyridoxal 5'-phosphate dependent enzyme that requires zinc for its function. It catalyses the conversion of D-serine into pyruvate and ammonia with the K(m) and k(cat) values of 0.39 mM and 13.1 s(-1) respectively. In this work, a new methodology for monitoring D-serine is presented. Our results show that this enzyme could be successfully used as a biological probe for detection of D-serine via fluorescence spectroscopy.  相似文献   

16.
Some physico-chemical properties, specificity and the character of action of rat liver nuclear ribonuclease are studied. The enzyme maximal activity was observed at pH 7.5--8.0, ionic strength 0.02--0.3, Mg2+ being necessary. Nuclease is an oligomer, having molecular weight is 160000--180000 daltons and containing separate associates. Purified enzyme is free of contaminating activities (polynucleotidephosphorylase, DNAse; 5'-nucleotidase, and alkaline phosphatases). It is shown to hydrolyse polyA and RNA for endonuclease type, degradation products being oligonucleotides terminating with 5'-phosphate and 3'-hydroxyl groups. RNAse hydrolyses all phosphodiester bonds in polynucleotides, developing no specificity to the nature of bases. Relative hydrolysis rate for different substrates decreased as follows: polyA greater than yeast RNA greater than polyC greater than polyU greater than 28S rRNA greater than greater than 18S rRNA greater than polyA-polyU. The enzyme may be classified as ribonucleate-5'-nucleotidehydrolase (EC 3.1.4.9.).  相似文献   

17.
We have purified three NifS homologs from Escherichia coli, CSD, CsdB, and IscS, that appear to be involved in iron-sulfur cluster formation and/or the biosynthesis of selenophosphate. All three homologs catalyze the elimination of Se and S from L-selenocysteine and L-cysteine, respectively, to form L-alanine. These pyridoxal 5'-phosphate enzymes were inactivated by abortive transamination, yielding pyruvate and a pyridoxamine 5'-phosphate form of the enzyme. The enzymes showed non-Michaelis-Menten behavior for L-selenocysteine and L-cysteine. When pyruvate was added, they showed Michaelis-Menten behavior for L-selenocysteine but not for L-cysteine. Pyruvate significantly enhanced the activity of CSD toward L-selenocysteine. Surprisingly, the enzyme activity toward L-cysteine was not increased as much by pyruvate, suggesting the presence of different rate-limiting steps or reaction mechanisms for L-cysteine desulfurization and the degradation of L-selenocysteine. We substituted Ala for each of Cys358 in CSD, Cys364 in CsdB, and Cys328 in IscS, residues that correspond to the catalytically essential Cys325 of Azotobacter vinelandii NifS. The enzyme activity toward L-cysteine was almost completely abolished by the mutations, whereas the activity toward L-selenocysteine was much less affected. This indicates that the reaction mechanism of L-cysteine desulfurization is different from that of L-selenocysteine decomposition, and that the conserved cysteine residues play a critical role only in L-cysteine desulfurization.  相似文献   

18.
1. The activities of the three arylsulphatases (arylsulphate sulphohydrolase, EC 3.1.6.1) of Aspergillus oryzae produced under a variety of repressing and non-repressing conditions were determined. 2. These enzymes exhibit different sensitivities to repression by inorganic sulphate. 3. Arylsulphatase I, but not arylsulphatases II and III, exhibits a transient de-repression in the early growth phase in sulphate media. 4. When the fungus is cultured in repressing media and subsequently transferred to non-repressing media, the synthesis of the three enzymes is non-co-ordinate. 5. Growth of the fungus in media containing choline O-sulphate or tyrosine O-sulphate as the sole source of sulphur results in complete de-repression of arylsulphatase I, But the synthesis of arylsulphatases II and III is essentially fully repressed. 6. The marked similarities between the repression characteristics of arylsulphatases II and III, contrasted with those of arylsulphatase I, indicate that the genetic locus of arylsulphatase I is distinct from that of arylsulphatases II and III, suggesting that there are distinct physiological roles for the enzyme.  相似文献   

19.
We found that some reaction products were produced from indole-mimic compounds, such as indoline (2,3-dihydroindole), indazole, 7-azaindole and 3-indazolinone, with l-serine by the catalytic action of the lyophilized cells of Escherichia coli T4-3 (a mutant defective in indole-3-glycerolphosphate synthase [EC 4.1.1.48]) cultured in a tryptophan-limited medium.A main product from indoline and l-serine was isolated and identified as a-amino-β-(1-indoline) propionic acid (AIP) from data obtained by paperchromatography, elemental analysis, UV, IR, 1H-NMR and mass spectrometry.The reaction conditions and the requirements for the reaction were also studied.AIP was produced only in the case of using l-serine, l-serine methylester and l-serine ethylester as the amino acid source.On the enzyme concerned AIP production, studies were carried out by using the mutant strains of E. coli defective in the enzyme(s) of tryptophan operon. Tryptophan synthase [EC 4.2.1.20], particularly its B protein, was presumed to be a possible candidate.  相似文献   

20.
The formation of adenosine cyclic 3',5'-phosphate by Brevibacterium liquefaciens ATCC 14929 was studied with the use of nonproliferating cells and cell-free extract. With nonproliferating cells provided by deprivation of sulfate, the formation of this nucleotide was accelerated by adding some amino acids and sugars. Among amino acids tested, alanine and asparagine were most effective. Pentoses were more favorable than hexoses and other sugars. Formation of adenosine cyclic 3',5'-phosphate was observed also with chloramphenicol-treated cells. Experiments on cell-free extract showed that addition of alanine or pyruvate stimulated the formation of adenosine cyclic 3',5'-phosphate from adenosine-5'-triphosphate. When alanine was added to the cell-free system, shaking of the reaction mixture further increased the amount of the nucleotide, but pyruvate was far more effective than alanine. No synergistic effect of alanine and pyruvate was observed. Some enzyme activity was observed which decomposed adenosine cyclic 3',5'-phosphate, but it was weak as compared with adenyl cyclase activity in the presence of pyruvate. From the results obtained, it appears that pyruvate may act as an activating factor of adenyl cyclase in Brevibacterium liquefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号