首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.  相似文献   

2.
Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry   总被引:23,自引:0,他引:23  
Chemokine receptors and related seven-transmembrane-segment (7TMS) receptors serve as coreceptors for entry of human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) into target cells. Each of these otherwise diverse coreceptors contains an N-terminal region that is acidic and tyrosine rich. Here, we show that the chemokine receptor CCR5, a principal HIV-1 coreceptor, is posttranslationally modified by O-linked glycosylation and by sulfation of its N-terminal tyrosines. Sulfated tyrosines contribute to the binding of CCR5 to MIP-1 alpha, MIP-1 beta, and HIV-1 gp120/CD4 complexes and to the ability of HIV-1 to enter cells expressing CCR5 and CD4. CXCR4, another important HIV-1 coreceptor, is also sulfated. Tyrosine sulfation may contribute to the natural function of many 7TMS receptors and may be a modification common to primate immunodeficiency virus coreceptors.  相似文献   

3.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

4.
Chemokines inhibit entry of HIV into CD4(+) T cells more effectively than into macrophages or transfected adherent cells. Here, we tested whether chemokine receptor internalization could account for cell type differences in the effectiveness of chemokines. Infection of CEM T cells expressing stably transduced wild-type CCR5 was much more readily inhibited by chemokine than were transduced HOS cells. This response correlated with the efficiency of CCR5 internalization. A mutated CCR5, termed M7-CCR5, in which the Ser/Thr phosphorylation sites in the cytoplasmic tail were changed to Ala, did not internalize in response to MIP-1alpha. M7-CCR5 was expressed at slightly higher levels than wild-type on stably transduced cell lines and was somewhat more potent as an HIV-1 coreceptor. The mutated receptor mobilized intracellular Ca(2+) in response to chemokine to a level 4-fold higher than did the wild type CCR5. Unexpectedly, the receptor was desensitized as efficiently as wild type, suggesting that desensitization does not require cytoplasmic tail phosphorylation. Entry of R5 HIV-1 reporter virus into cells stably expressing M7-CCR5 was largely resistant to blocking by MIP-1alpha. As much as 80% of entry inhibition was attributed to receptor internalization. Aminooxypentane (AOP)-MIP-1alpha was able to induce a low level of M7-CCR5 internalization in HOS and to weakly inhibit HIV-1 entry. Introduction of dominant negative dynamin into HOS cells reduced the ability of chemokine to inhibit infection. The inefficiency of internalization of chemokine receptors in some cell types could allow virus to replicate in vivo in the presence of endogenous chemokine. Last, M7-CCR5 is a useful tool for discriminating coreceptor internalization from binding site masking in the evaluation of small molecule inhibitors of HIV-1 entry.  相似文献   

5.
Characterization of the role of the N-loop of MIP-1 beta in CCR5 binding   总被引:4,自引:0,他引:4  
Bondue A  Jao SC  Blanpain C  Parmentier M  LiWang PJ 《Biochemistry》2002,41(46):13548-13555
MIP-1beta is a CC-chemokine that plays a role in inflammation and host defense mechanisms by interacting with its specific receptor CCR5. CCR5 is a major coreceptor for macrophage-tropic human immunodeficiency virus (HIV), and as a consequence, MIP-1beta can inhibit HIV entry. It is therefore of interest to understand how MIP-1beta and other CCR5 ligands bind to their receptor, as such understanding could lead to the rational design of more efficient HIV entry blockers. We have previously demonstrated the importance of Phe13, and of basic residues of the 40's loop, in mediating high-affinity binding of MIP-1beta to CCR5. We have now investigated further the relative contribution of other MIP-1beta residues in the interaction of the chemokine with CCR5, by studying the functional consequences of point mutations within the N-loop and the 3(10) turn of MIP-1beta, affecting the charge, size, and H-bonding properties of the side chains. Our data suggest that, in addition to Phe13, three amino acids of the N-loop and 3(10) turn (Arg18, Lys19, and Arg22) interact with CCR5 through their positive charge. We also found that Pro21 contributes to the CCR5 binding properties of MIP-1beta. Moreover, NMR spectroscopy has revealed that the presence of Tyr at position 15 is necessary for the proper folding of the chemokine. Our results therefore demonstrate that the binding determinants of MIP-1beta consist of residues arranged on one surface of the protein, including most of the basic residues in MIP-1beta, as well as two key hydrophobic groups. The good correlation observed between the potency of the mutants in a functional assay and their binding affinity strongly argues that basic residues Arg18, Lys19, and Arg22 of MIP-1beta are essential for its CCR5 binding properties, without a primary effect on CCR5 activation.  相似文献   

6.
Molecular analysis of CCR5, the cardinal coreceptor for HIV-1 infection, has implicated the N-terminal extracellular domain (N-ter) and regions vicinal to the second extracellular loop (ECL2) in this activity. It was shown that residues in the N-ter are necessary for binding of the physiologic ligands, RANTES (CCL5) and MIP-1 alpha (CCL3). vMIP-II, encoded by the Kaposi's sarcoma-associated herpesvirus, is a high affinity CCR5 antagonist, but lacks efficacy as a coreceptor inhibitor. Therefore, we compared the mechanism for engagement by vMIP-II of CCR5 to its interaction with physiologic ligands. RANTES, MIP-1 alpha, and vMIP-II bound CCR5 at high affinity, but demonstrated partial cross-competition. Characterization of 15 CCR5 alanine scanning mutants of charged extracellular amino acids revealed that alteration of acidic residues in the distal N-ter abrogated binding of RANTES, MIP-1 alpha, and vMIP-II. Whereas mutation of residues in ECL2 of CCR5 dramatically reduced the binding of RANTES and MIP-1 alpha and their ability to induce signaling, interaction with vMIP-II was not altered by any mutation in the exoloops of the receptor. Paradoxically, monoclonal antibodies to N-ter epitopes did not block chemokine binding, but those mapped to ECL2 were effective inhibitors. A CCR5 chimera with the distal N-ter residues of CXCR2 bound MIP-1 alpha and vMIP-II with an affinity similar to that of the wild-type receptor. Engagement of CCR5 by vMIP-II, but not RANTES or MIP-1 alpha blocked the binding of monoclonal antibodies to the receptor, providing additional evidence for a distinct mechanism for viral chemokine binding. Analysis of the coreceptor activity of randomly generated mouse-human CCR5 chimeras implicated residues in ECL2 between H173 and V197 in this function. RANTES, but not vMIP-II blocked CCR5 M-tropic coreceptor activity in the fusion assay. The insensitivity of vMIP-II binding to mutations in ECL2 provides a potential rationale to its inefficiency as an antagonist of CCR5 coreceptor activity. These findings suggest that the molecular anatomy of CCR5 binding plays a critical role in antagonism of coreceptor activity.  相似文献   

7.
Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors.  相似文献   

8.
Interaction of soluble CD4 with the chemokine receptor CCR5   总被引:1,自引:0,他引:1  
The chemokine receptor CCR5 is constitutively associated with the T cell co-receptor CD4 in plasma cell membranes. The CD4-CCR5 complex exhibits distinct binding properties for macrophage inflammatory protein 1beta (MIP-1beta) and enhanced G-protein signaling as compared with those of CCR5 alone. Here we report that recombinant soluble CD4, when refolded into its dimeric form, allosterically modulates CCR5 and decreases the affinity for its natural ligand MIP-1beta. Monomeric soluble CD4 had little inhibitory effect on CCR5. In contrast, the two-domain amino-terminal fragment of soluble CD4 was able to completely inhibit the interaction of CCR5 with MIP-1beta. Thus, we suggest that various conformational states of CD4 exist, which differ markedly with regard to inhibiting the interaction of CCR5 with its ligand MIP-1beta. R5-tropic HIV-1 glycoprotein 120, but not interleukin-16, the natural agonist, or X4-tropic glycoprotein 120, inhibited MIP-1beta binding to CCR5 in the presence of monomeric and dimeric soluble CD4.  相似文献   

9.
Activated lymphocytes synthesize and secrete substantial amounts of the beta-chemokines macrophage inflammatory protein (MIP)-1 alpha/CCL3 and MIP-1 beta/CCL4, both of which inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). The native form of MIP-1 beta secreted by activated human peripheral blood lymphocytes (MIP-1 beta(3-69)) lacks the two NH(2)-terminal amino acids of the full-length protein. This truncated form of MIP-1 beta has now been affinity-purified from the culture supernatant of such cells, and its structure has been confirmed by mass spectrometry. Functional studies of the purified protein revealed that MIP-1 beta(3-69) retains the abilities to induce down-modulation of surface expression of the chemokine receptor CCR5 and to inhibit the CCR5-mediated entry of HIV-1 in T cells. Characterization of the chemokine receptor specificity of MIP-1 beta(3-69) showed that the truncated protein not only shares the ability of intact MIP-1 beta to induce Ca(2+) signaling through CCR5, but unlike the full-length protein, it also triggers a Ca(2+) response via CCR1 and CCR2b. These results demonstrate that NH(2)-terminally truncated MIP-1 beta functions as a chemokine agonist with expanded receptor reactivity, which may represent an important mechanism for regulation of immune cell recruitment during inflammatory and antiviral responses.  相似文献   

10.
The human immunodeficiency virus, type 1 (HIV-1) entry process is triggered by interaction between the viral envelope and a seven membrane-spanning domain receptor at the cell surface, usually the CCR5 chemokine receptor. Different naturally occurring mutations in the CCR5 gene abolish receptor function, the most frequent being a 32-nucleotide deletion resulting in a truncated protein (Delta32) lacking the last three transmembrane domains (TM5-7). This mutant is retained in the endoplasmic reticulum and exerts a trans-dominant negative (TDN) effect on the wild type, preventing its exit from this compartment. This TDN effect is often considered as evidence for the oligomerization of CCR5 during transport to the cell surface. Here we use a genetic approach to define the structural determinants of the TDN effect of the Delta32 mutant. It was abolished by certain deletions and by mutations of cysteine residues preventing formation of a disulfide link between the first and second extracellular loops, suggesting that conformation of Delta32 is important for its interaction with CCR5. To circumvent this problem, we used chimeric forms of the Delta32 and wild type CCR5, consisting in substitutions with homologous domains from the mouse CCR5. All chimeric full-length receptors were expressed at the cell surface and were functional for interaction with HIV-1 or with a chemokine ligand, when assayed. The TDN effect was only observed if both the TM3 domain in CCR5 and the TM4 domain in Delta32 were from human origin, whereas the rest of the proteins could be from either origin. This suggests that the TDN effect involves some form of interaction between these transmembrane domains. Alternatively, but less likely to us, substitutions in TM4 could affect the conformation of CCR5 in the endoplasmic reticulum but not at the cell surface. However that may be, it seems that the TDN effect of the Delta32 mutant has no bearing to the issue of CCR5 dimerization and to its possible role in the processing of the receptor to the cell surface.  相似文献   

11.
The natural ligands for the CCR5 chemokine receptor, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES (regulated on T-cell activation, normal T-cell expressed and secreted), are known to inhibit human immunodeficiency virus (HIV) entry, and N-terminally modified RANTES analogues are more potent than native RANTES in blocking infection. However, potent CCR5 blocking agents may select for HIV-1 variants that use alternative coreceptors at less than fully inhibitory concentrations. In this study, two N-terminal chemical modifications of RANTES produced by total synthesis, aminooxypentane (AOP)-RANTES[2-68] and N-nonanoyl (NNY)-RANTES[2-68], were tested for their ability to prevent HIV-1 infection and to select for coreceptor switch variants in the human peripheral blood lymphocyte-SCID mouse model. Mice were infected with a CCR5-using HIV-1 isolate that requires only one or two amino acid substitutions to use CXCR4 as a coreceptor. Even though it achieved lower circulating concentrations than AOP-RANTES (75 to 96 pM as opposed to 460 pM under our experimental conditions), NNY-RANTES was more effective in preventing HIV-1 infection. However, in a subset of treated mice, these levels of NNY-RANTES rapidly selected viruses with mutations in the V3 loop of envelope that altered coreceptor usage. These results reinforce the case for using agents that block all significant HIV-1 coreceptors for effective therapy.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) requires, in addition to CD4, coreceptors of the CC or CXC chemokine families for productive infection of T cells and cells of the monocyte-macrophage lineage. Based on the hypothesis that coreceptor expression on alveolar macrophages (AM) may influence HIV-1 infection of AM in the lung, this study analyzes the expression and utilization of HIV-1 coreceptors on AM of healthy individuals. AM were productively infected with five different primary isolates of HIV-1. Levels of surface expression of CCR5, CXCR4, and CD4 were low compared to those of blood monocytes, but CCR3 was not detectable. mRNA for CCR5, CXCR4, CCR2, and CCR3 were all detectable, but to varying degrees and with variability among donors. Expression of CCR5, CXCR4, and CCR2 mRNA was downregulated following stimulation with lipopolysaccharide (LPS). In contrast, secretion of the chemokines RANTES, MIP-1alpha, and MIP-1beta was upregulated with LPS stimulation. Interestingly, HIV-1 replication was diminished following LPS stimulation. Infection of AM with HIV-1 in the presence of the CC chemokines demonstrated blocking of infection. Together, these studies demonstrate that AM can be infected by a variety of primary HIV-1 isolates, AM express a variety of chemokine receptors, the dominant coreceptor used for HIV entry into AM is CCR5, the expression of these receptors is dependent on the state of activation of AM, and the ability of HIV-1 to infect AM may be modulated by expression of the chemokine receptors and by chemokines per se.  相似文献   

13.
HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands.   总被引:6,自引:0,他引:6  
HIV is a persistent virus that survives and replicates despite an onslaught by the host's immune system. A strategy for cell entry, requiring the use of two receptors, has evolved that may help evade neutralizing antibodies. HIV and SIV usually require both CD4 and a seven transmembrane (7TM) coreceptor for infection. At least eleven different 7TM coreceptors have been identified that confer HIV and/or SIV entry. For HIV-1, the major coreceptors are CCR5 and CXCR4, while the role of other coreceptors for replication and cell tropism in vivo is currently unclear. Polymorphisms in the CCR5 gene that reduce CCR5 expression levels, protect against disease progression, suggesting that drugs targeted to CCR5 could be effective. Such therapies however will not work if HIV simply adapts to use alternative coreceptors. In the light of these themes, this review will discuss the following topics: (i) the coreceptors used by primary HIV-1 and HIV-2 viruses, (ii) the properties and coreceptors of HIV-2 strains that infect cells without CD4, (iii) the role of coreceptors in HIV cell tropism and particularly macrophage infection and (iv) the properties of chemokine receptor ligands that block HIV infection.  相似文献   

14.
HIV is a persistent virus that survives and replicates despite an onslaught by the host's immune system. A strategy for cell entry, requiring the use of two receptors, has evolved that may help evade neutralizing antibodies. HIV and SIV usually require both CD4 and a seven transmembrane (7TM) coreceptor for infection. At least eleven different 7TM coreceptors have been identified that confer HIV and/ or SIV entry. For HIV-1, the major coreceptors are CCR5 and CXCR4, while the role of other coreceptors for replication and cell tropism in vivo is currently unclear. Polymorphisms in the CCR5 gene that reduce CCR5 expression levels, protect against disease progression, suggesting that drugs targeted to CCR5 could be effective. Such therapies however will not work if HIV simply adapts to use alternative coreceptors. In the light of these themes, this review will discuss the following topics: (i) the coreceptors used by primary HIV-1 and HIV-2 viruses, (ii) the properties and coreceptors of HIV-2 strains that infect cells without CD4, (iii) the role of coreceptors in HIV cell tropism and particularly macrophage infection and (iv) the properties of chemokine receptor ligands that block HIV infection.  相似文献   

15.
The CC chemokine receptor 6 (CCR6) is selectively expressed on memory T cells, B cells, and dendritic cells and appears to be involved in the initiation of a memory immune response. The only chemokine ligand for CCR6 is CCL20/MIP-3. In the present study, we attempted to define the extracellular domains (ECDs) of CCR6 responsible for CCL20/MIP-3 binding using a domain-swapping approach in which the ECDs of CCR6 were substituted with the corresponding CCR5 domains to generate various CCR6/CCR5 chimeras. These chimeras were tested for receptor expression, ligand binding, and functional activity as evaluated by calcium flux and chemotaxis. All chimeras showed respectable surface expression; however only one, substituted with extracellular loop 1 from CCR5, showed reduced functional activity. The general failure of functionality of the CCR6/CCR5 chimeras may imply that characteristics of each ECD are critical for coordination among all the ECDs of CCR6. Additionally, of interest, a chimera containing all of the ECDs from CCR5 in the context of CCR6 neither responded to CCR5 ligands nor served as a coreceptor for macrophage-tropic HIV-1. These results suggest that not only ECDs but also transmembrane and intracellular domains of CCR5 are involved in both ligand binding and coreceptor activity.  相似文献   

16.
The CC-chemokines RANTES, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta are natural ligands for the CC-chemokine receptor CCR5. MIP-1alpha, also known as LD78alpha, has an isoform, LD78beta, which was identified as the product of a nonallelic gene. The two isoforms differ in only 3 amino acids. LD78beta was recently reported to be a much more potent CCR5 agonist than LD78alpha and RANTES in inducing intracellular Ca2+ signaling and chemotaxis. CCR5 is expressed by human monocytes/macrophages (M/M) and represents an important coreceptor for macrophage-tropic, CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains to infect the cells. We compared the antiviral activities of LD78beta and the other CC-chemokines in M/M. LD78beta at 100 ng/ml almost completely blocked HIV-1 replication, while at the same concentration LD78alpha had only weak antiviral activity. Moreover, when HIV-1 infection in M/M was monitored by a flow cytometric analysis using p24 antigen intracellular staining, LD78beta proved to be the most antivirally active of the chemokines. RANTES, once described as the most potent chemokine in inhibiting R5 HIV-1 infection, was found to be considerably less active than LD78beta. LD78beta strongly downregulated CCR5 expression in M/M, thereby explaining its potent antiviral activity.  相似文献   

17.
Chemokines play diverse roles in inflammatory and non-inflammatory situations via activation of heptahelical G-protein-coupled receptors. Also, many chemokine receptors can act as cofactors for cellular entry of human immunodeficiency virus (HIV) in vitro. CCR5, a receptor for chemokines MIP-1alpha (LD78alpha), MIP-1beta, RANTES, and MCP2, is of particular importance in vivo as polymorphisms in this gene affect HIV infection and rate of progression to AIDS. Moreover, the CCR5 ligands can prevent HIV entry through this receptor and likely contribute to the control of HIV infection. Here we show that a non-allelic isoform of human MIP-1alpha (LD78alpha), termed LD78beta or MIP-1alphaP, has enhanced receptor binding affinities to CCR5 (approximately 6-fold) and the promiscuous beta-chemokine receptor, D6 (approximately 15-20-fold). We demonstrate that a proline residue at position 2 of MIP-1alphaP is responsible for this enhanced activity. Moreover, MIP-1alphaP is by far the most potent natural CCR5 agonist described to date, and importantly, displays markedly higher HIV1 suppressive activity than all other human MIP-1alpha isoforms examined. In addition, while RANTES has been described as the most potent inhibitor of CCR5-mediated HIV entry, MIP-1alphaP was as potent as, if not more potent than, RANTES in HIV-1 suppressive assays. This property suggests that MIP-1alphaP may be of importance in controlling viral spread in HIV-infected individuals.  相似文献   

18.
The reported structures of many CC chemokines show a conserved dimer interface along their N-terminal region, raising the possibility that the quaternary arrangement of these small immune proteins might influence their function. We have produced and analyzed several mutants of MIP-1 beta having a range of dimer K(d) values in order to determine the significance of dimerization in receptor binding and cellular activation. NMR and analytical ultracentrifugation were used to analyze the oligomeric state of the mutants. Functional relevance was determined by receptor binding affinity and the ability to invoke intracellular calcium release from CHO cells transfected with the MIP-1 beta receptor CCR5. The monomeric N-terminally truncated mutant MIP(9) was able to bind the CCR5 receptor with a K(i) of 600 pM but displayed weak agonistic properties, while the monomeric mutant P8A still retained the ability to tightly bind (K(i) = 480 pM) and to activate (EC(50) = 12 nM) the receptor. These data suggest that the MIP-1 beta dimer is not required for CCR5 binding or activation. In addition, we identified Phe13, the residue immediately following the conserved CC motif in MIP-1 beta, as a key determinant for binding to CCR5. Replacement of Phe13 by Tyr, Leu, Lys, and Ala showed the aromatic side chain to be important for both binding to CCR5 and chemokine dimerization.  相似文献   

19.
Oppermann M 《Cellular signalling》2004,16(11):1201-1210
CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. It also serves as the main coreceptor for the entry of R5 strains of human immunodeficiency virus (HIV-1, HIV-2). Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCR, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization. This review discusses recent advances in the elucidation of the structure and function of CCR5, as well as the complex mechanisms that regulate CCR5 signalling and cell surface expression.  相似文献   

20.
CC-chemokine receptor 5 (CCR5) is the principal coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have generated a set of anti-CCR5 monoclonal antibodies and characterized them in terms of epitope recognition, competition with chemokine binding, receptor activation and trafficking, and coreceptor activity. MC-4, MC-5, and MC-7 mapped to the amino-terminal domain, MC-1 to the second extracellular loop, and MC-6 to a conformational epitope covering multiple extracellular domains. MC-1 and MC-6 inhibited regulated on activation normal T cell expressed and secreted (RANTES), macrophage inflammatory polypeptide-1beta, and Env binding, whereas MC-5 inhibited macrophage inflammatory polypeptide-1beta and Env but not RANTES binding. MC-6 induced signaling in different functional assays, suggesting that this monoclonal antibody stabilizes an active conformation of CCR5. Flow cytometry and real-time confocal microscopy showed that MC-1 promoted strong CCR5 endocytosis. MC-1 but not its monovalent isoforms induced an increase in the transfer of energy between CCR5 molecules. Also, its monovalent isoforms bound efficiently, but did not internalize the receptor. In contrast, MC-4 did not prevent RANTES binding or subsequent signaling, but inhibited its ability to promote CCR5 internalization. These results suggest the existence of multiple active conformations of CCR5 and indicate that CCR5 oligomers are involved in an internalization process that is distinct from that induced by the receptor's agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号