首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principal nutrient source for forest trees derives from the weathering of soil minerals which results from water circulation and from plant and microbial activity. The main objectives of this work were to quantify the respective effects of plant- and root-associated bacteria on mineral weathering and their consequences on tree seedling growth and nutrition. That is why we carried out two column experiments with a quartz-biotite substrate. The columns were planted with or without pine seedlings and inoculated or not with three ectomycorrhizosphere bacterial strains to quantify biotite weathering and pine growth and to determine how bacteria improve pine growth. We showed that the pine roots significantly increased biotite weathering by a factor of 1.3 for magnesium and 1.7 for potassium. We also demonstrated that the inoculation of Burkholderia glathei PML1(12) significantly increased biotite weathering by a factor of 1.4 for magnesium and 1.5 for potassium in comparison with the pine alone. In addition, we observed a significant positive effect of B. glathei PMB1(7) and PML1(12) on pine growth and on root morphology (number of lateral roots and root hairs). We demonstrated that PML1(12) improved pine growth when the seedlings were supplied with a nutrient solution which did not contain the nutrients present in the biotite. No improvement of pine growth was observed when the seedlings were supplied with all the nutrients necessary for pine growth. We therefore propose that the growth-promoting effect of B. glathei PML1(12) mainly resulted from the improved plant nutrition via increased mineral weathering.  相似文献   

2.
The role of ectomycorrhizal fungi on mineral nutrient mobilization and uptake is crucial for tree nutrition and growth in temperate forest ecosystems. By using a “mineral weathering budget” approach, this study aims to quantify the effect of the symbiosis with the ectomycorrhizal model strain Laccaria bicolor S238N on mineral weathering and tree nutrition, carrying out a column experiment with a quartz/biotite substrate. Each column was planted with one Scots pine (Pinus sylvestris L.) non-mycorrhizal or mycorrhizal with L. bicolor, with exception of the abiotic control treatment. The columns were continuously supplied with a nutrient-poor solution. A mineral weathering budget was calculated for K and Mg. The pine shoot growth was significantly increased (73%) when plants were mycorrhizal with L. bicolor. Whatever their mycorrhizal status, pines increased mineral weathering by factors 1.5 to 2.1. No difference between non-mycorrhizal and mycorrhizal pine treatments was revealed, however, mycorrhizal pines assimilated significantly more K and Mg. This suggests that in our experimental conditions, L. bicolor S238N improved shoot growth and K and Mg assimilation in Scots pine mainly by increasing the uptake of dissolved nutrients, linked to a better exploration and exploitation of the soil by the mycorrhizal roots.  相似文献   

3.
The weathering of soil minerals in forest ecosystems increases nutrient availability for the trees. The rate of such weathering and its relative contribution to forest tree nutrition, is a major issue when evaluating present and potential forest stand productivity and sustainability. The current paper examines the weathering rate of plagioclase with and without Douglas-fir or Scots pine seedlings, in a laboratory experiment at pH 3–4 and 25 °C. All nutrients, with the exception of Ca, were supplied in sufficient amounts in a nutrient solution. The objective of the experiment was to evaluate the potential of trees to mobilise Ca from the mineral plagioclase that contained 12% of Ca. Amounts of nutrients supplied in the nutrient solution, amounts accumulated in the living tissue of the seedlings and amounts leached from the experimental vessels, were measured. A weathering balance, accounting for leached + accumulated − supplied amounts, was established. Bio-induced weathering, defined as the weathering increase in the presence of trees, relative to the weathering rate without trees (geochemical weathering; control vessels), under the present experimental conditions, explained on average, 40% of total weathering (biological + geochemical). These conditions appeared more beneficial to Scots pine (higher relative growth rate, higher Ca incorporation) than to Douglas-fir.  相似文献   

4.
Lodgepole pine seedlings were grown in solution culture withtheir root systems divided between two contrasting nutrientregimes, viz. a high regime, which provided near optimum conditionsfor growth, and a low regime in which nutrients were limiting.The high nutrient regime stimulated root growth whereas theroots receiving a low level of nutrients grew comparativelyslowly and in certain instances stopped elongating and becamebrown. After differential root growth had been induced certainplants were transferred to a uniform high nutrient environmentand the previously deprived parts of the root system respondedby renewed growth and their growth rate increased in comparisonwith roots which remained in low nutrient conditions. The results show that initial nutritional differences in theenvironment do not lead to dominance in certain roots; the rootsystem remains remarkably plastic.  相似文献   

5.
Barley seedlings (Hordeum vulgare L. cv Herta) were grown in N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid-buffered nutrient solutions with or without adequate Zn supplies. Fifteen-d-old Zn-deficient seedlings contained higher concentrations of Mn, Ca, Mg, and P in their shoots and more Fe, Mn, Cu, K, Ca, and P in their roots than did similar Zn-adequate seedlings, confirming results reported in our companion study (W.A. Norvell and R.M. Welch [1993] Plant Physiol 101: 619-625). Zn-deficient roots leaked greater quantities of K, Mn, Cu, and Cl than did roots supplied adequately with Zn; they also leaked significant amounts of Zn even though the seedlings were not supplied Zn during growth. Calculated uptake rates of P, Mn, and Na were sharply reduced, but uptake rates of K and Mg were stimulated by increasing the Zn2+ activity in nutrient solutions. Intact roots of Zn-deficient seedlings contained lower concentrations of 5,5[prime] -dithio-bis(2-nitrobenzoic acid) reactive sulfhydryl groups in comparison to Zn-adequate roots. Apparently, Zn is required for the uptake and retention of several mineral nutrients by roots, possibly by playing a protective role in preventing the oxidation of sulfhydryl groups to disulfides in root-cell plasma membrane proteins involved in ion channel-gating phenomena.  相似文献   

6.
Influence of the spatial layout of vegetation on the stability of slopes   总被引:4,自引:0,他引:4  

Background and aims

Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system.

Methods

Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to 9 months. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations.

Results

Cation nutrient stress had little impact on carbon allocation after 9 months of plant growth and K was the limiting nutrient for biomass production. Measurement of Ca/Sr and K/Rb ratios allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment.

Conclusions

Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca since Ca was not limiting plant growth. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.  相似文献   

7.
Wallander  Håkan 《Plant and Soil》2000,222(1-2):215-229
Pinus sylvestris seedlings, colonised by ectomycorrhizal (EM) fungi from either of two different soils (untreated forest soil and a limed soil from a clear cut area), were grown with or without biotite as a source of K. The biotite was naturally enriched in 87Sr and the ratio of 87Sr/ 86Sr in the plant biomass was estimated and used as a marker for biotite weathering and compared to estimates of weathering based on foliar content of K. Different nutrient regimes were used to expose the seedlings to deficiencies of K with and without an application of nitrogen (NH4NO3) in excess of seedling demand. The seedlings were grown for 220 days and the elemental composition of the shoots were analysed at harvest. The EM colonisation was followed by analysing the concentration of ergosterol in the roots and the soils. Bacterial activity of the soil was estimated by the thymidine incorporation technique. The concentration of organic acids in the soil solution was measured in the soil in which seedlings colonised by EM fungi from the untreated forest soil were grown. It was found that seedlings colonised by EM fungi from untreated forest soil had taken up more K in treatments with biotite addition compared to seedlings colonised by EM fungi from the limed forest soil (p<0.05). Seedlings from untreated forest soil had larger shoots and contained more K when grown with biotite compared to KCl as K source, indicating that biotite had a stimulatory effect on the growth of these seedlings which was not related to K uptake. Seedlings from the limed soil, on the other hand, had similar foliar K content when grown with either biotite or KCl as K source. The larger uptake of K in seedlings from untreated forest soil was not an effect of a more developed EM colonisation of the roots since seedlings from the limed soil had a higher ergosterol concentration both in the soil and in the roots. Nutrient regimes had no significant influence on the total uptake of K but the 87Sr/ 86Sr isotope ratio in the plant biomass indicated that seedlings grown with excess nitrogen supply had taken up proportionally less Sr from the biotite (1.8% of total Sr content) compared to seedlings grown with a moderate nitrogen supply (5.0%). Furthermore, seedlings grown with excess nitrogen supply had a reduced fungal colonisation of roots and soil and bacterial activity was lower in these soils. The 87Sr/ 86Sr ratio in the plant biomass was positively correlated with fungal colonisation of the roots (r 2=0.98), which may indicate that the fungus was involved in releasing Sr from the biotite. Uptake of K from biotite was not related to the amount of organic acids in the soil solution. Oxalic acid was positively related to the amount of ergosterol in the root, suggesting that oxalic acid in the soil solution originates from the EM symbionts. The accuracy of the estimations of biotite weathering based on K uptake by the seedlings in comparison with the 87Sr/86Sr isotope ratio measured in the shoots is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Sugar beet seedlings (Beta vulgaris L. cv. Monohill) were grownfor 14 d on a nutrient solution based on the nutrient proportionsin healthy plants. Nutrients were supplied either once at relativelyhigh concentrations, or in small amounts with a daily incrementalincrease of 0?15 or 0?20 in accordance with an exponential growthrate. Cadmium (0, 0?6, 2?3, 50 or 20?0 µmol) was introducedeither by a single addition or in daily increments of 0?15 or0?20. Cadmium uptake, expressed as a percentage of total Cd2+supplied, decreased with increasing total Cd2+ content and withdecreasing availability of nutrients. With a daily supply ofcadmium, net uptake, transport and content per unit of dry weightin roots and shoots were related to the total Cd2+ supplied.Cadmium caused growth retardation, increased root/whole-plantratio, and decreased root-tip respiration and photosynthesis.At high initial nutrient concentrations, Cd2+ decreased thecontents of sucrose, glucose, fructose, and starch per unitof dry weight. The opposite was found if nutrients were addeddaily. In the latter case, the dry weight/fresh weight ratioalso increased. The effects of cadmium were related to [Cd2+]in proportion both to the root absorption area and to the nutrientconcentration. Key words: Sugar beet, mineral provision, cadmium uptake, sugar formation, growth  相似文献   

9.
Sitka spruce seedlings were grown with their root systems dividedbetween two contrasting nutrient regimes. One half of the rootsystem was supplied with a solution containing N, P, and K ata range of concentrations while the untreated half receivedwater only. High-nutrient treatments induced two flushes ofshoot growth resulting in a large shoot system, whereas plantsin the low-nutrient treatments flushed once only and showedsymptoms of nutrient deficiency. Root growth, assessed in terms of dry weight and diameter ofboth primary and woody tissues, was stimulated in the rootsto which the nutrients were actually applied, whereas in theuntreated roots on treated plants only the primary root diameterwas enhanced. However, internal nutrient concentrations on bothsides of the root system were related to the concentrationsapplied, though to a slightly lesser extent in the untreatedroots. Thus, the nutrients which had been internally translocatedto the untreated roots had little effect on their growth. The localized stimulation of xylem production in the woody rootsextended into the stem along a spiral pathway which was demonstratedby the movement of dye. Possible mechanisms are discussed by which differential rootgrowth is brought about by a localized supply of mineral nutrients.  相似文献   

10.
1 We tested whether seedlings of small‐seeded species were more reliant on soil nutrients than large‐seeded ones by growing 21 species from three woody genera ( Eucalyptus, Hakea and Banksia ) along a gradient of nutrient availability.
2 At very low nutrient availability, larger seeds produced larger seedlings. This was seen especially among the eucalypts, but the difference was eliminated at optimal soil nutrient levels. Hakea species with large seed mass, and all Banksia species, appeared unable to exploit additional soil nutrients for growth, whatever the level supplied.
3 Larger seeds tended to have proportionately higher contents of N, P and K and, under nutrient‐poor conditions, supplied more of these to their seedlings, although at a diminishing rate.
4 We suggest that large‐seededness could be an adaptation to the high‐light, nutrient‐impoverished habitats in which these species occur by providing the seedling with the mineral nutrients, rather than carbon‐based metabolites, needed for maximizing initial root growth. Reaching reliable moisture before summer (drought avoidance) is an alternative strategy to physiological tolerance of drought.  相似文献   

11.
Fifteen or 30 days of anaerobic growth conditions significantly reduced shoot and root nitrogen, potassium, phosphorus, iron and manganese concentrations in seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.] and drought-hardy and wet-site loblolly pine ( P. taeda L.) grown in a culture system using non-circulating, continuously flowing solution. Calcium and shoot magnesium levels were least affected by anaerobic growth conditions – largely reflecting the passive nature of their uptake. Shoot and root nutrient content (mg nutrient pot-1) followed similar trends, with wet-site loblolly and pond pine seedlings least affected by anaerobic solution culture. Shoot biomass of wet-site loblolly and pond pine seedlings was not affected by anaerobiosis, suggesting an increase in shoot nutrient utilization efficiency. Root biomass was significantly reduced by 15 or 30 days of anaerobiosis, with sand pine exhibiting the largest reduction in root dry weight (57%).
These results suggest that anaerobiosis interferes with net nutrient acquisition, even under the high nutrient conditions provided by solution culture. Sand pine suffered the largest reductions in shoot and root biomass and nutrient concentrations, showing earlier symptoms of waterlogging injury and nutrient stress than drought-hardy loblolly pine seedlings. Whether net nutrient acquisition decreased because of the reduction in root surface area available for absorption and/or reduced uptake efficiency cannot be ascertained from these data.  相似文献   

12.
Ectomycorrhizal seedlings of Scots pine ( Pinus sylvestris L. cv.), inoculated with the fungus Suillus bovinus (L. ex Fr.) O. Kuntze, and non-mycorrhizal controls were grown in growth units with a circulating culture solution. Steady-state nutrition and constant relative growth rates were achieved by means of varied relative nutrient addition rates and free access of nutrients. Typical mycorrhizas always formed within a short period of time after inoculation. The nutrition/growth relationships were in principle similar to previous studies under steady-state conditions: there were close linear relationships between relative addition rate, relative growth rate and internal nitrogen concentration, i.e. an equilibrium established between nutrients added and taken up. This occurred when infected and uninfected seedlings were grown separately. When grown together in the same growth unit, there are indications that the fungus influenced the exudation pattern of the uninfected seedlings. More carbon was thus provided to the unspecified microflora in the cultivation system, and it was able to grow and withhold nitrogen from the seedlings. The mycorrhizal infection did not increase the specific uptake capacity of the roots, and the fungus constituted a sink for carbon. However, the nitrogen productivity (growth rate per unit of nitrogen per unit of time) was similar for mycorrhizal and non-mycorrhizal seedlings, so that there might be mechanisms which compensate for the carbon cost.  相似文献   

13.
The growth, accumulation and movement of mineral nutrients (nitrogen,phosphorus, potassium (calcium) and chlorophyll in needles ofyoung radiata pine trees (Pinus radiata D. Don) were examined,from bud break in spring through the following year. Retranslocationof nutrients from needles was measured and is discussed in relationto nutrient requirements for seasonal growth. During the first 4–5 months after bud break when mostneedle growth occurred, all nutrients and chlorophyll accumulatedprogressively, although the concentrations of nitrogen, phosphorusand potassium decreased. During summer, substantial amounts of phosphorus were withdrawnfrom needles less than 6 months old, regardless of positionon the tree and silvicultural practice. In young needles andunder certain environmental conditions, this led to a markedtemporary decline in concentrations, even in fertilized treeson a fertile site. However, the phosphorus content of needleswas quickly restored following autumn rains. Similar fluctuations,including nutrient withdrawal in summer, occurred for nitrogenand potassium, but these were smaller than those observed forphosphorus. Phosphorus was also withdrawn from relatively olderneedles during summer. It was estimated that on a tree basis 86, 48 and 39 per centof the phosphorus, nitrogen and potassium, respectively, insummer shoots could have come from the retranslocation of nutrientsfrom young needles formed during the preceding spring. These results highlight the importance of nutrients stored inneedles to meet the nutrient requirements for growth when environmentalfactors may not be conducive to nutrient uptake from the soil. Pinus radiata D. Don, mineral nutrition, retranslocation, phosphorus, nitrogen, seasonal effects, pine needle growth  相似文献   

14.
Vascular plants and associated microbial communities affect the nutrient resources of terrestrial ecosystems by impacting chemical weathering that transfers elements from primary minerals to other ecosystem pools, and chemical denudation that transports weathered elements out of the system in solution. We performed a year-long replicated flow-through column growth experiment to isolate the effects of vascular plants, ectomycorrhiza-forming fungi and associated bacteria on chemical weathering and chemical denudation. The study focused on Ca2+, K+ and Mg2+, for which the sole sources were biotite and anorthite mixed into silica sand. Concentrations of the cations were measured in input and output solutions, and three times during the year in plant biomass and on exchangeable cation sites of the growth medium. Weathering and denudation fluxes were estimated by mass balance, and mineral surface changes, biofilm and microbial attachments to surfaces were investigated with scanning electron microscopy. Both bacteria and fungi increased weathering fluxes compared to abiotic controls. Without a host plant denudation rates were as large as weathering rates i.e. the weathering to denudation ratio was about one. Based on whole year fluxes, ectomycorrhizal seedlings produced the greatest weathering to denudation ratios (1.5). Non-ectomycorrhizal seedlings also showed a high ratio of 1.3. Both ectomycorrhizal hyphal networks and root hairs of non-ectomycorrhizal trees, embedded in biofilm (microorganisms surrounded by extracellular polymers), transferred nutrients to the host while drainage losses were minimized. These results suggest that biofilms localize both weathering and plant nutrient uptake, isolating the root-hypha-mineral interface from bulk soil solution.  相似文献   

15.
Mineral nutrient requirements of cucumber seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Mineral nutrient requirements for maximum growth rate of cucumber (Cucumis sativus L.) seedlings are estimated on the basis of three criteria. 1. The optimal weight proportions among the nutrients present in the seedlings. In relation to N = 100, close to 75 K, 13 P, 9 Ca, and 9 Mg are required. 2. The optimal ratio between the nitrogen sources NH4 and NO3 in the solution. The best growth is recorded with about equivalent amounts. Nitrate alone is also highly productive. Cucumber prefers nitrate and is sensitive to high ammonium concentrations. 3. The optimal total concentration in the solution corresponds to 200 to 300 milligrams of nitrogen per liter, with the proportions of the nutrients according to criterion 1. Simple growth methods are suggested in which the three criteria are fulfilled.  相似文献   

16.
Mineral Nutrition of Sandalwood (Santalum spicatum)   总被引:2,自引:0,他引:2  
Acacia acuminata is a preferred host of the root hemiparasitictree, Santalum spicatum (sandalwood). Comparison between nutrientcontent of adult trees of sandalwood and results for an earlierstudy of the mistletoe, Amyema preissii, on the same host species,A. acuminata, showed similar high levels of K and Na and lowlevels of Zn in both parasites compared with the host plants.Differences in K, Ca, N and Cu levels between parasitized anduninfected Acacias imply that the host plant contributes tothe nutrition of sandalwood. The high K/Ca ratio in sandalwoodconfirms that K uptake in preference to Ca is a general featureof all categories of angiosperm parasites. Patterns of distribution of nutrients between various partsof sandalwood and A. acuminata depend on the type of nutrient,but levels are usually highest in leaves of both species andthe haustoria. Although K, Ca and Na are much lower in the kernelsthan in vegetative parts of the parasite, only seedlings withoutsupplementary Ca in a nutrient omission experiment failed togrow at all in the absence of hosts. Growth is not dependenton the level of K in the unattached plants but other evidenceindicates it may have a role in water uptake in the attachedplant. Calcium supply has a marked effect on internal Ca levelsand growth of unattached plants. Compared with field plants,levels of Ca, and to a lesser extent Zn, were much higher inplants of the Ca/K treatment that produced greatest growth over34 weeks. Haustorial formation is enhanced by the presence of A. acuminataroots. However, competition for nutrients, especially Ca, fromco-planted A. acuminata seedlings results in suppression ofgrowth of young sandalwood compared with their growth in theabsence of the host species. Key words: Mineral nutrients, Santalum spicatum, Acacia acuminata, hemiparasites, K/Ca nutrition, seeds  相似文献   

17.
外生菌根菌在火炬松人工林应用的研究   总被引:1,自引:2,他引:1  
连续6年研究了外生菌根菌在火炬松人工林的应用.结果表明,12个供试菌株均能不同程度地在火炬松根系上形成外生菌根.在12个供试菌株中,以松林小牛肝菌效果最佳,无论是在苗期还是上山造林,对促进寄主生长的效果均最好,且促进寄主生长的效果在立地条件较差的情况下表现得更为明显.  相似文献   

18.
The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots’ tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks’ growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (?8.9 and ?9.8 °C) or SDLT (?7.5 and ?6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.  相似文献   

19.
The auxin content in roots of hydroponically grown wheat (Triticum durum Desf.) plants was affected by imbalanced distribution of nutrients when the root medium fed to plants from isolated compartments. One day after the transfer of seedlings on the nutrient medium with uneven ion distribution, the IAA content in roots contacting concentrated nutrient solution became significantly higher than in roots bathed with a dilute solution. The IAA content reached the peak on the second day and remained steadily high later on. The lateral root primordia developed in these roots were more numerous; the largest difference in this parameter was observed in 1–2 days after the increase in root content of auxin. One day later, numerous lateral roots appeared on the parent roots contacting the concentrated nutrient solution. Thus, the increase in concentration of the nutrient solution bathing a part of root system raised the IAA content in the affected roots prior to the enhanced root branching. This hormonal response of plants might play an important role in changes of root growth rate and root branching, thereby improving plant nutrition.  相似文献   

20.
In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.The mobilization of nutrients via the biotic and abiotic weathering of soil minerals is crucial to satisfying plant nutritional needs (2, 17), especially in acidic forest soils, which are mainly nonfertilized and nutrient poor. Besides the physicochemical weathering reactions, evidence is presently accumulating which indicates that certain soil bacterial strains increase mineral weathering and improve tree nutrition (5, 9, 32, 39-41).By way of their root exudates, plants alter the structure and activity of microbial communities (6, 25, 51) and selectively favor certain ones that are potentially beneficial to them (15, 16, 21, 45, 46). A hypothesis for sustainable forest development proposes that tree roots select from the soil efficient mineral weathering bacterial communities that may contribute to nutrient mobilization and tree growth (20). In this manner, recent studies (10, 46) have revealed that the oak-Scleroderma citrinum ectomycorrhizal symbiosis selects bacterial communities that are more efficient in mineral weathering than those of the surrounding soil, suggesting that the mycorrhizal symbiosis has an indirect effect on plant nutrition through its selective pressure on the functional diversity of the mycorrhizosphere bacterial communities.Distinct impacts of the tree species on the soil bacterial community structure have been previously reported (23, 38), suggesting that the composition and activity of soil bacterial communities depend on tree physiology and notably on its impact on the soil physicochemical properties and nutrient cycling (24, 26, 37). However, no study has ever addressed the question of the impact of tree species on the structure of forest soil bacterial communities involved in mineral weathering. This question regarding the impact of tree species on the functional diversity of the bacterial communities remains a major issue in forestry, especially in the context of today''s climate change, which will give rise to a shift in the spatial distribution of forest tree species.To appreciate the effect of tree species on mycorrhizosphere bacterial communities, we focused on a single but ubiquitous mycorrhizal fungus, S. citrinum, which forms mycorrhizae with different tree species. Since no functional genes have been identified to date, a cultivation-dependent analysis was developed in this study. A total of 155 bacterial isolates were randomly chosen among a collection of 400 bacterial isolates from the soil-Scleroderma citrinum mycorrhiza interface (ectomycorrhizosphere), the extramatrical mycelium (hyphosphere), and the surrounding soil (bulk soil) in 28-year-old stands of oak (Quercus sessiliflora Smith), beech (Fagus sylvatica L.), and Norway spruce (Picea abies Karst.). The mineral weathering potential of each bacterial isolate was evaluated by way of an in vitro microplate assay, putting in interaction a calibrated bacterial suspension and the biotite, a mineral widespread in soils (46). The bacterial isolates were genotypically characterized by amplifying and sequencing a portion of the 16S rRNA gene. Their mineral weathering efficiencies and the functional structure of the bacterial communities were compared with the physicochemical characteristics of the surrounding soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号