首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A variety of modifiers of carboxypeptidase A (CPA) have been investigated in an effort to understand the structural requirements of inhibitors and activators of peptidase activity. It is proposed that an understanding of the mechanism of action of reversible activators of the enzyme may bear on the long standing question of whether the detailed mechanism of peptidase activity is different from that of esterase activity. An analog of the activator 2,2-dimethyl-2-silapentane-5-sulfonate, 5,5-dimethylhexanoate, was found to be a competitive inhibitor of the CPA-catalyzed hydrolysis of benzoylglycyl-L-phenylalanine. The modifier 4-phenyl-3-butenoate (styrylacetic acid) was determined to be an activator. The sulfonates benzene-sulfonate, p-toluenesulfonate, phenylmethanesulfonate, 2-phenylethanesulfonate, and 3-phenylpropanesulfonate were all found to be activators.  相似文献   

2.
J M Salhany    S Ogawa  R G Shulman 《Biochemistry》1975,14(10):2180-2190
The quaternary structures of fully liganded adult hemoglobin and hemoglobin Kansas (alpha2beta2 102 Asn-thr) bound by carbon monoxide or nitric oxide were spectroscopically characterized using high-resolution nuclear magnetic resonance (NMR) and ultraviolet circular dichroism (CD). The spectral markers used for the quarternary transition were the line in the NMR spectrum in H2O-14 ppm downfield from 2,2-dimethyl-2-silapentane-5-sulfonate and the negative peak at 285 nm in the ultraviolet CD spectrum. In the nitrosyl derivatives, these two structural markers were compared with the electron paramagnetic resonance (EPR) spectrum at room temperature for the purpose of correlating structural changes in the protein with changes at the heme...  相似文献   

3.
The hydrophobic character of the trimethyl group of sodium 2,2-dimethyl-2-silapentane-5-sulfonate, makes it an effective PMR probe for apolar sites on proteins and membranes. By comparing the spin-spin relaxation rates of the free and bound probe the extent and strength of the interaction can be qualitatively compared for bovine serum albumin, membranes from Micrococcus lysodeikticus and for different fractions isolated from this membrane. It is concluded that this membrane has hydrophobic sites on or near its surface and that the number of such sites is sensitive to the ionic composition and to the pH of its aqueous environment. Removal of lipid from the membrane greatly increased the binding of the probe, while vesicular preparations of the lipid fraction itself gave no evidence of an interaction with the probe. The results are discussed in terms of protein-lipid-water interactions.  相似文献   

4.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

5.
1H, 13C and 15N chemical shift referencing in biomolecular NMR   总被引:25,自引:2,他引:23  
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS tetramethylsilane - TSP 3-(trimethylsilyl)-propionate, sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - TFE 2,2,2-trifluoroethanol - DMSO dimethyl sulfoxide  相似文献   

6.
Several exchangeable resonances, designated a, b, c and d are observed in the 11-14 ppm (from 2,2-dimethyl-2-silapentane-5-sulfonate) region of the proton spectrum of ribonuclease A in water solution. We describe a number of lines of evidence suggesting the assignment of peaks b and c to the N1 and N3 protons of His 48, which occupies an interior position in the protein remote from the active site. This evidence includes the observation that the binding of Cu(II) and 3'-CMP (cytidine 3'-monophosphate) has no effect on these resonances. Further evidence includes pH titration data showing a pKa of approx. 2 for these protons, solvent exchange rates in the native state and with disulfide bridges IV-V and III-VIII cleaved, the observation of the carboxymethylated enzymes CM-His12-RNAase A and CM-His119-RNAase A, and of the modified enzymes Des(1-21)-RNAase A (S-protein) and Des(119-124)-RNAase A.  相似文献   

7.
Proton nuclear magnetic resonance studies of the isotropically shifted resonances of native cytochrome c peroxidase have been carried out at 360 MHz. Proton resonances extend to 84 ppm downfield and 12 ppm upfleld from 2,2-dimethyl-2-silapentane-5-sulfonate and are characteristic of high-spin iron +3 heme proteins. Between pH 8 and 4.1 the isotropic resonances exhibit dramatic pH-dependent behavior which demonstrates the presence of two acid-base interconversions. One process, with a pKa of 5.8, is slow on the NMR time scale and probably represents a protein conformation change. This process correlates with an apparent pKa observed in the kinetic properties of the enzymes, with the alkaline form being the enzymatically active species. A second ionization with a pK of 4.9 is fast on the NMR time scale and probably represents a true ionization.  相似文献   

8.
Proton nuclear magnetic resonance studies have revealed several structural and dynamic properties of the glutamine-binding protein of Escherichia coli. When this protein binds L-glutamine, six low-field, exchangeable proton resonances appear in the region from +5.5 to +10 parts per million downfield from water (or +10.2 to +14.7 parts per million downfield from the methyl proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate). This suggests that the binding of L-glutamine induces specific conformational changes in the protein molecule, involving the formation of intermolecular and intramolecular hydrogen bonds between the glutamine-binding protein and L-glutamine, and within the protein molecule. The oxygen atom of the gamma-carbonyl group of L-glutamine is likely to be involved in the formation of an intermolecular hydrogen bond between the ligand and the binding protein. We have shown that at least one phenylalanine and one methyl-containing residue are spatially close to this intermolecular hydrogen-bonded proton. The intermolecular and intramolecular hydrogen-bonded protons of the ligand-protein complex undergo solvent exchange. The local conformations around these intermolecular and intramolecular hydrogen bonds are quite stable when subjected to pH and temperature variations. From these results, the utility of proton nuclear magnetic resonance spectroscopy for investigating such binding proteins has been shown, and a picture of the ligand-binding process can be drawn.  相似文献   

9.
I Morishima  S Ogawa 《Biochemistry》1978,17(21):4384-4388
Enzymatic reaction intermediates of horseradish peroxidase, compounds I and II, were studied by high-resolution nuclear magnetic resonance spectroscopy at 220 MHz. The heme peripheral proton peaks were successfully obtained in the downfield region of 50 to 80 ppm from 4,4-dimethyl-4-silapentane-5-sulfonate for compound I and of 10 to 20 ppm for compound II at pH 9.2. This indicates that no isoporphyrin appears in the catalytic cycle of the enzyme. Temperature dependences of the spectra also were determined for these compounds between 7 and 32 degrees C. With increasing temperature, all the peaks in the downfield region for compound I shifted upfield, obeying the Curie law. These results suggest that the Fe atoms in compounds I and II are in ferryl high- and low-spin states, respectively. The spectrum was also observed in solutions of horse metmyoglobin to which hydrogen peroxide (H2O2) was added. The electron formulations of the hemes in their spectra. Evidence was found against a pi-cation radical on the heme ring as a source of the oxidizing equivalent in compound I.  相似文献   

10.
We describe a general protocol for preparing protein-containing biofluids for 1H nuclear magnetic resonance (NMR) metabolomic studies. In this protocol, untreated samples are diluted in deuterated solvents to precipitate proteins and recover metabolites quantitated relative to standard reference compounds such as 3-trimethylsilylpropionic acid (TSP) and 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS). The efficacy of this protocol was tested using a bovine serum albumin/metabolite mix and human serum samples. This sample preparation method can be readily applied to any protein-containing biofluid for 1H NMR studies.  相似文献   

11.
Histidine-binding protein J of Salmonella typhimurium has been chosen as a model system for a proton nuclear magnetic resonance spectroscopic investigation of binding protein-ligand interaction. This interaction is involved in the recognition step of the osmotic shock-sensitive active transport systems. When J protein binds L-histidine, four new, low-field, exchangeable proton resonances appear in the region +7 to +12 parts per million downfield from the water proton resonance (or +11.7 to +16.7 parts per million downfield from the methyl proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate). Due to their chemical shift range and other properties, they indicate the formation of both intra- and intermolecular hydrogen bonds. Experiments with 15N-labeled compounds confirm this conclusion. The specificity of the hydrogen-bond formation is demonstrated by observing the effects of substrate analogs, temperature, pH, and mutations on the exchangeable proton resonances. Proton-proton nuclear Overhauser effect measurements suggest that two of these exchangeable proton resonances (at +7.2 and +10.6 parts per million from H2O) are most likely from intramolecular hydrogen-bonded protons, while the other two (at +7.1 and +9.5 parts per million from H2O) are intermolecular hydrogen bonds. Our finding of L-histidine-induced hydrogen-bond formation in histidine-binding protein J in the solution state is an excellent demonstration of the production of specific conformational changes in a periplasmic binding protein upon binding of ligand.  相似文献   

12.
The N-terminal domain of enzyme IIA(Glc) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system confers amphitropism to the protein, allowing IIA(Glc) to shuttle between the cytoplasm and the membrane. To further understand this amphitropic protein, we have elucidated, by NMR spectroscopy, the solution structure of a synthetic peptide corresponding to the N-terminal domain of IIA(Glc). In water, this peptide is predominantly disordered, consistent with previous data obtained in the absence of membranes. In detergent micelles of dihexanoylphosphatidylglycerol (DHPG) or sodium dodecylsulfate (SDS), however, residues Phe 3-Val 10 of the peptide adopt a helical conformation in the ensemble of structures calculated on the basis of NOE-derived distance restraints. The root mean square deviations for superimposing the backbone atoms of the helical region are 0.18 A in DHPG and 0.22 A in SDS. The structure, chemical shifts, and spin-spin coupling constants all indicate that, of the four lysines in the N-terminal domain of IIA(Glc), only Lys 5 and Lys 7 in the amphipathic helical region interact with DHPG. In addition, the peptide-detergent interactions were investigated using intermolecular NOESY experiments. The aliphatic chains of anionic detergents DHPG, SDS, and 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS) all showed intermolecular NOE cross-peaks to the peptide, providing direct evidence for the putative membrane anchor of IIA(Glc) in binding to the membrane-mimicking micelles.  相似文献   

13.
This report describes the chemical synthesis of a new bile acid analogue, namely, sodium 3 alpha, 7 alpha-dihydroxy-25-homo-5 beta-cholane-25-sulfonate from homochenodeoxycholic acid. The structure of the new compound was assigned by proton magnetic resonance and infrared spectrometry. Its metabolism was studied in the hamster in comparison with sodium 3 alpha, 7 alpha-dihydroxy-24-nor-5 beta-cholane-23-sulfonate and sodium taurochenodeoxycholate. After intraduodenal administration of the 3H-labeled analogues into bile fistula hamsters, both sulfonates were absorbed from the intestine and nearly 80% of the radioactivity was secreted into bile within 8 h. Intra-ileal administration revealed that these compounds resembled taurochenodeoxycholate in that they were much more rapidly absorbed from the ileum than from the proximal small intestine: more than 85% of the radioactivity was recovered in bile within 1 h. After intravenous infusion the sulfonates were efficiently extracted by the liver at rates similar to that of sodium taurochenodeoxycholate. Chromatographic analysis of the bile showed that, regardless of the route of administration, most (> 95%) of the sulfonates were not biotransformed and they became major biliary bile acids. Sodium 3 alpha, 7 alpha-dihydroxy-25-homo-5 beta-cholane-25-sulfonate and, to a lesser extent, sodium 3 alpha, 7 alpha-dihydroxy-24-nor-5 beta-cholane-23-sulfonate induced cholestasis at infusion rates at which sodium taurochenodeoxycholate produced choleresis.  相似文献   

14.
Summary A simple method is described for the facile synthesis of gramicidin S and six other analogs, using standard solidphase synthetic technology and a single solution-phase cyclization step. The peptides were purified to homogeneity and characterized by plasma desorption time-of-flight mass spectrometry and NMR spectroscopy. Complete 1H NMR assignments for all seven peptides (in aqueous solution) are presented. Unlike previous approaches, the presented method is simple, automatable, rapid (less than three days), high-yielding, requires no side-chain protection during cyclization, and appears to be generally applicable to the preparation of a variety of related head-to-tail cyclic peptides.Abbreviations Boc t-butyloxycarbonyl - BOP benzotriazoyl N-oxytris(dimethylamino)phosphonium hexafluorophosphate - Bzl benzyl - DCC N,N-dicyclohexylcarbodiimide - DCM dichloromethane - DIEA N,N-diisopropylethylamine - DMF N,N-dimethylformamide - DQF-COSY double-quantum-filtered correlation spectroscopy - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - EDAC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide - HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate - HOBt 1-hydroxybenzotriazole - 4-MeBzl 4-methylbenzyl - NHS N-hydroxysuccinimide - NOESY nuclear Overhauser effect spectroscopy - PAM phenylacetamidomethyl (resin) - RP-HPLC reversed-phase high-performance liquid chromatography - TFA trifluoroacetic acid - TOCSY total correlation spectroscopy - Tos tosyl - Troc 2,2,2-trichloroethylcarbamate.  相似文献   

15.
An extract of leaves and stems of Peperomia villipetiola has been found to contain myristicin (3-methoxy-4,5-methylenedioxy-allylbenzene) and seven chromenes, whose structures are methyl 5-hydroxy-7-methyl-2,2-dimethyl-2H-1-chromene-6-carboxylate (1), methyl 5-methoxy-7-methyl-2,2-dimethyl-2H-1-chromene-8-carboxylate (2), methyl 7-hydroxy-5-methyl-2,2-dimethyl-2H-1-chromene-6-carboxylate (3), methyl 7-methoxy-5-methyl-2,2-dimethyl-2H-1-chromene-6-carboxylate (4), 5-methanol-7-hydroxy-2,2-dimethyl-2H-1-chromene-6-carboxylic acid (5), 5-methanol-7-methoxy-2,2-dimethyl-2H-1-chromene-6-carboxylic acid (6), and methyl 5-acetoxymethanol-7-hydroxy-2,2-dimethyl-2H-1-chromene-6-carboxylate (7). A biosynthetic rationale for 1-7 suggests that orsellinic acid may be a common intermediate. The anti-fungal activities of the chromenes were measured bioautographically against Cladosporium cladosporioides and Cladosporium sphaerospermum: compounds 6 and 7 were found to be the most active.  相似文献   

16.
We present the 300 MHz high-resolution proton nuclear magnetic resonance spectra of the ring NH hydrogen-bonded protons of six purified tRNAs. Good agreement was obtained between the observed spectra and those computed on the assumption of the suitable cloverleaf models. In the computation it is assumed that the hydrogen-bonded ring NH in each type of base pair has an intrinsic position with respect to 2,2-dimethyl-2-silapentane-5-sulfonate, i.e. in A·U it is at ?14·8 parts per million, in G·C at ?13·7 parts per million and in A·Ψat ?13·5 parts per million. The shifts of these resonances from these positions are calculated by including ring current fields from the nearest neighbors. The agreement is very good, adding support to our earlier findings that there is no evidence for additional Watson-Crick base pairs detected beyond those in the cloverleaf. In general, resolved resonances are fitted by the computed spectra to within ±0·2 part per million showing that there is no need for any additional physical mechanism to explain the nuclear magnetic resonance positions. Hence, the nuclear magnetic resonance spectra can be interpreted in terms of the structure of their neighbors and in a few important cases this has been particularly valuable in understanding the structure beyond the end of a helical region. In the tRNAGluE.coli′ for example, the positions of the resonances in A·U no. 7 and A·U no. 49 at the interior ends of the acceptor and -T-Ψ-C- stems, respectively, strongly suggest that these two stems are in a continuous helix. Other structural effects at the ends of the helical regions are also suggested by the nuclear magnetic resonance spectra.  相似文献   

17.
Three new chromones, 5-methoxy-2,2-dimethyl-7-(2-oxopropyl)-2,3-dihydrochromen-4-one (1), 5-methoxy-2,2-dimethyl-8-(2-oxopropyl)-2,3-dihydrochromen-4-one (2), and 1-(3,4-dihydro-5-methoxy-2,2-dimethyl-2H-chromen-7-yl)propan-2-one (3), together with four known chromones (47) were isolated from the stems of Cassia fistula. Their structures were elucidated by spectroscopic methods, including extensive 1D- and 2D-NMR techniques. Compounds 15 were evaluated for their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compound 5 exhibited high anti-TMV activity with inhibition rate of 30.8% at a concentration of 20 μM. The other compounds also exhibited potential anti-TMV activities with inhibition rates in the range of 15.6–22.1% at the same concentration.  相似文献   

18.
Previously we reported two metabolites of the insecticide carbofuran as persistent inhibitors of the peroxidase-catalysed oxidtion ofindole-3-acetic acid. In searching for more active inhibitors of this type, we have found that 5-hydroxy-2,2-dimethylchromene (β-tubanol), 2′,6′-dihydroxycetophenone oxime, 5-hydroxy-2,2-dimethylchroman, 2′,6′-dihydroxyacetophenone and 2,6-dihydroxybenzoic acid methyl ester were more active than the carbofuran metabolite 7-hydroxy-2,2-dimethyl-3-oxo-2,3-dihydrobenzofuran. Resorcinol, 5-hydroxy-2,2-dimethylchroman-4-one, 3-hydroxy-5-methoxy-2,2-dimethylchroman-4-one and 5-hydroxy-2-methylchrom-4-one were also inhibitory but with less activity. The new inhibitors differed from the well-known phenolic inhibitors such as caffeic acid in inhibition kinetics as demonstrated by the rate of disappearance of indole-3-acetic acid, the rate of formation of the oxidation products, and the transient spectral change in the enzyme.  相似文献   

19.
Using improved selective excitation methods for protein nuclear magnetic resonance (NMR), we have conducted measurements of the oxygenation of hemoglobin inside intact human red blood cells. The selective excitation methods use pulse shape-insensitive suppression of the water signal, while producing uniform phase excitation in the region of interest and, thus, are suitable for a wide variety of applications in vivo. We have measured the areas of 1H-NMR resonances of the hyperfine-shifted, exchangeable N delta H protons of the proximal histidine residues of the alpha- and beta-chains in deoxyhemoglobin (63 and 76 ppm downfield from the proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), respectively), which are sensitive to the paramagnetic state of the iron, and for which the alpha- and beta-chain resonances are resolved, and from the ring current-shifted gamma 2-CH3 protons of the distal valine residues in oxyhemoglobin (2.4 ppm upfield from DSS), which are sensitive to the conformation of the heme pocket in the oxy state. We have found that the proximal histidine resonances are directly correlated with the degree of oxygenation of hemoglobin, whereas the distal valine resonances appear to be correlated with the conformation in the heme pocket that occurs after the binding of oxygen, in both the presence and absence of 2,3-diphosphoglycerate. In addition, from the proximal histidine resonances, we have observed a preference for the binding of oxygen to the alpha-chain (up to about 10%) of hemoglobin over the beta-chain in both the presence and absence of 2,3-diphosphoglycerate. These new results obtained in intact erythrocytes are consistent with our previous 1H-NMR studies on purified human normal adult hemoglobin. A unique feature of our 1H-NMR method is the ability to monitor the binding of oxygen specifically to the alpha- and beta-chains of hemoglobin both in solution and in intact red blood cells. This information is essential to our understanding of the molecular basis for the hemoglobin molecule serving as the oxygen carrier in vertebrates.  相似文献   

20.
The effects of phospholipid or detergent chain length on the structure and translational diffusion coefficient of the membrane-targeting peptide corresponding to the N-terminal amphipathic sequence of Escherichia coli enzyme IIA(Glc) were investigated by nuclear magnetic resonance (NMR) spectroscopy. Three anionic phospholipids (dihexanoyl phosphatidylglycerol, dioctanoyl phosphatidylglycerol, and didecanoyl phosphatidylglycerol) and four lipid-mimicking anionic detergents (sodium hexanesulfonate, 2,2-dimethyl-silapentane-5-sulfonate, sodium nonanesulfonate, and sodium dodecylsulfate) were evaluated. In all cases, the cationic peptide adopts an amphipathic helical structure. While the chain length of the two-chain phospholipids has a negligible effect on the peptide conformation, the effect of chain length of those single-chain detergents on the helix length is more pronounced. The diffusion coefficients of the peptide/micelle complexes were found to correlate with the chain lengths of both the lipid and the detergent groups. Taken together, short-chain anionic phospholipids are proposed to be useful membrane-mimetic models for the structural elucidation of membrane-binding peptides such as cationic antimicrobial peptides. DSS does not form micelles by itself according to the diffusion coefficient data, but it does associate with this cationic peptide. Consequently, both DSS and its analog may be chosen as NMR chemical shift reference compounds depending on the nature of the biomolecules under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号