首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrilases (nitrile aminohydrolases, EC ) are enzymes that catalyze the hydrolysis of nitriles to the corresponding carbon acids. Among the four known nitrilases of Arabidopsis thaliana, the isoform NIT4 is the most divergent one, and homologs of NIT4 are also known from species not belonging to the Brassicaceae like Nicotiana tabacum and Oryza sativa. We expressed A. thaliana NIT4 as hexahistidine tag fusion protein in Escherichia coli. The purified enzyme showed a strong substrate specificity for beta-cyano-l-alanine (Ala(CN)), an intermediate product of cyanide detoxification in higher plants. Interestingly, not only aspartic acid but also asparagine were identified as products of NIT4-catalyzed Ala(CN) hydrolysis. Asn itself was no substrate for NIT4, indicating that it is not an intermediate but one of two reaction products. NIT4 therefore has both nitrilase and nitrile hydratase activity. Several lines of evidence indicate that the catalytic center for both reactions is the same. The NIT4 homologs of N. tabacum were found to catalyze the same reactions and protein extracts of A. thaliana, N. tabacum and Lupinus angustifolius also converted Ala(CN) to Asp and Asn in vitro. NIT4 may play a role in cyanide detoxification during ethylene biosynthesis because extracts from senescent leaves of A. thaliana showed higher Ala(CN) hydratase/nitrilase activities than extracts from nonsenescent tissue.  相似文献   

2.
 The Arabidopsis thaliana genome has four nitrilase (nitrile aminohydrolase, EC 3.5.5.1) genes (NIT1 to NIT4). These nitrilases catalyze hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). Growth of A. thaliana is inhibited by IAN probably due to hydrolysis of IAN to IAA, while the tobacco (Nicotiana tabacum) genome has only NIT4 homologs and is resistant to IAN. In this study, we introduced A. thaliana NIT1 to NIT4 into tobacco. Introduction of NIT1, NIT2 or NIT3 into tobacco conferred growth inhibition by IAN. NIT2 transgenic plants were highly sensitive to IAN, and NIT1 and NIT3 transgenic plants were moderately sensitive. On the other hand, NIT4 transgenic plants were less sensitive to IAN, although some morphological changes in the roots were observed as the wild-type tobacco. These findings suggest that the ability of transgenic tobacco to convert IAN to IAA in vivo is markedly different among transgenes of NIT1 to NIT4. Received: 22 November 1999 / Revision received: 28 January 2000 / Accepted: 4 February 2000  相似文献   

3.
The promoter of the nit1 gene, encoding the predominantly expressed isoform of the Arabidopsis thaliana (L.) Heynh. nitrilase isoenzyme family, fused to the β-glucuronidase gene (uidA) drives β-glucuronidase expression in the root system of transgenic A. thaliana and tobacco plants. This expression pattern was shown to be controlled developmentally, suggesting that the early differentiation zone of root tips and the tissue surrounding the zone of lateral root primordia formation may constitute sites of auxin biosynthesis in plants. The root system of A. thaliana was shown to express functional nitrilase enzyme. When sterile roots were fed [2H]5-L-tryptophan, they converted this precusor to [2H]5-indole-3-acetonitrile and [2H]5-indole-3-acetic acid. This latter metabolite was further metabolized into base-labile conjugates which were the predominant form of [2H]5-indole-3-acetic acid extracted from roots. When [1-13C]-indole-3-acetonitrile was fed to sterile roots, it was converted to [1-13C]-indole-3-acetic acid which was further converted to conjugates. The results prove that the A. thaliana root system is an autonomous site of indole-3-acetic acid biosynthesis from L-tryptophan. Received: 3 February 1998 / Accepted: 17 April 1998  相似文献   

4.
Strain ZJB-063, a versatile nitrile-amide-degrading strain, was newly isolated from soil in this study. Based on morphology, physiological tests, Biolog and the 16S rDNA sequence, strain ZJB-063 was identified as Bacillus subtilis. ZJB-063 exhibited nitrilase activity without addition of inducers, indicating that the nitrilase in B. subtilis ZJB-063 is constitutive. Interestingly, the strain exhibited nitrile hydratase and amidase activity with the addition of ɛ-caprolactam. Moreover, the substrate spectrum altered with the alteration of enzyme systems due to the addition of ɛ-caprolactam. The constitutive nitrilase was highly specific for arylacetonitriles, while the nitrile hydratase/amidase in B. subtilis ZJB-063 could not only hydrolyze arylacetonitriles but also other nitriles including some aliphatic nitriles and heterocyclic nitriles. Despite comparatively low activity, the amidase of hydratase/amidase system was effective in converting amides to acids. The versatility of this strain in the hydrolysis of various nitriles and amides makes it a potential biocatalyst in organic synthesis.  相似文献   

5.
6.
Three of the nitrilase isoenzymes of Arabidopsis thaliana (L.) Heynh. are located on chromosome III in tandem and these genes (NIT2/NIT1/NIT3 in the 5′→3′ direction) encode highly similar polypeptides. Copy DNAs encompassing the entire coding sequences for all three nitrilases were expressed in Escherichia coli as fusion proteins containing a C-terminal hexahistidine extension. All three nitrilases were obtained as enzymatically active proteins, and their characteristics were determined, including a detailed comparative analysis of their substrate preferences. All three nitrilases converted indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA), albeit, compared to the most effective substrates found, phenylpropionitrile (PPN), allylcyanide, (phenylthio)acetonitrile and (methylthio)acetonitrile, with low affinity and velocity. The preferred substrates are either naturally occurring substrates, which may originate from glucosinolate breakdown, or they are close relatives of these. Thus, a major function of NIT1, NIT2 and NIT3 is assigned to be the conversion to carboxylic acids of nitriles from glucosinolate turnover or degradation. While all nitrilases exhibit a similar pH optimum around neutral, and NIT1 and NIT3 exhibit a similar temperature optimum around 30 °C independent of the substrate analyzed (IAN, PPN), NIT2 showed a remarkably different temperature optimum for IAN (15 °C) and PPN (35–40 °C). A potential role for NIT2 in breaking seed dormancy in A. thaliana by low temperatures (stratification), however, was ruled out, although NIT2 was the predominantly expressed nitrilase isoform in developing embryos and in germinating seeds, as judged from an analysis of β-glucuronidase reporter gene expression under the control of the promoters of the four isogenes. It is possible that NIT2 is involved in supplying IAA during seed development rather than during stratification. Received: 13 May 2000 / Accepted: 14 August 2000  相似文献   

7.
Protein engineering is a powerful tool for improving the properties of enzymes. However, large changes in enzyme properties are still challenging for traditional evolution strategies because they usually require multiple amino acid substitutions. In this study, a feasible evolution approach by a combination of fragment swapping and semi-rational design was developed for the engineering of nitrilase. A chimera BaNIT harboring 12 amino acid substitutions was obtained using nitrilase from Arabis alpine (AaNIT) and Brassica rapa (BrNIT) as parent enzymes, which exhibited higher enantioselectivity and activity toward isobutylsuccinonitrile for the biosynthesis of pregabalin precursor. The semi-rational design was executed on BaNIT to further generate variant BaNIT/L223Q/H263D/Q279E with the concurrent improvement of activity, enantioselectivity, and solubility. The robust nitrilase displayed a 5.4-fold increase in whole-cell activity and the enantiomeric ratio (E) increased from 180 to higher than 300. Molecular dynamics simulation and molecular docking demonstrated that the substitution of residues on the A and C surface contributed to the conformation alteration of nitrilase, leading to the simultaneous enhancement of enzyme properties. The results obtained not only successfully engineered the nitrilase with great industrial potential for the production of pregabalin precursor, but also provided a new perspective for the development of novel industrially important enzymes.  相似文献   

8.
A conserved mechanism for nitrile metabolism in bacteria and plants   总被引:1,自引:0,他引:1  
Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonises the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene ( pinA ) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of β-cyano- l -alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to β-cyano- l -alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of β-cyano- l -alanine, and the β-cyano- l -alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use β-cyano- l -alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana , enabling plants to grow in concentrations of β-cyano- l -alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of β-cyano- l -alanine, but also resulted in increased root elongation in the absence of exogenous β-cyano- l -alanine, demonstrating that β-cyano- l -alanine nitrilase activity can have a significant effect on root physiology and root development.  相似文献   

9.
Aspergillus niger K10 cultivated on 2-cyanopyridine produced high levels of an intracellular nitrilase, which was partially purified (18.6-fold) with a 24% yield. The N-terminal amino acid sequence of the enzyme was highly homologous with that of a putative nitrilase from Aspergillus fumigatus Af293. The enzyme was copurified with two proteins, the N-terminal amino acid sequences of which revealed high homology with those of hsp60 and an ubiquitin-conjugating enzyme. The nitrilase exhibited maximum activity (91.6 U mg-1) at 45°C and pH 8.0. Its preferred substrates, in the descending order, were 4-cyanopyridine, benzonitrile, 1,4-dicyanobenzene, thiophen-2-acetonitrile, 3-chlorobenzonitrile, 3-cyanopyridine, and 4-chlorobenzonitrile. Formation of amides as by-products was most intensive, in the descending order, for 2-cyanopyridine, 4-chlorobenzonitrile, 4-cyanopyridine, and 1,4-dicyanobenzene. The enzyme stability was markedly improved in the presence of d-sorbitol or xylitol (20% w/v each). p-Hydroxymercuribenzoate and heavy metal ions were the most powerful inhibitors of the enzyme.  相似文献   

10.
Nitrilase (E.C. 3.5.5.1) cloned from Arabidopsis thaliana converts indole-3-acetonitrile to the plant growth hormone, indole-3-acetic acid in vitro. To probe the capacity of this enzyme under physiological conditions in vivo, the cDNA PM255, encoding nitrilase II, was stably integrated into the genome of Nicotiana tabacum by direct protoplast transformation under the control of the CaMV-35S promotor. The regenerated plants appeared phenotypically normal. Nitrilase II was expressed, based on the occurrence of its mRNA and polypeptide. The enzyme was catalytically active, when extracted from leaf tissue of transgenic plants (specific activity: 25 fkat mg?1 protein with indole3-acetonitrile as substrate). This level of activity was lower than that found in A. thaliana, and this was deemed essential for the in vivo analysis. Leaf tissue from the transgenic plants converted 1-[13C]-indole-3-acetonitrile to 1-[13C]-indole-3-acetic acid in vivo as determined by HPLC/ GC-MS analysis. Untransformed tobacco was unable to catalyze this reaction. When transgenic seeds were grown on medium in the absence of indole-3-acetonitrile, germination and seedling growth appeared normal. In the presence of micromolar levels of exogenous indole-3-acetonitrile, a strong auxin-overproducing phenotype developed resulting in increased lateral root formation (at 10 µM indole-3-acetonitrile) or stunted shoot growth, excessive lateral root initiation, inhibition of root out-growth and callus formation at the root/shoot interface (at 100 µM indole-3-acetonitrile). Collectively, these data prove the ability of nitrilase II to convert low micromolar levels of indole-3-acetonitrile to indole-3-acetic acid in vivo, even when expressed at subphysiological levels thereby conferring a high-auxin phenotype upon transgenic plants. Thus, the A. thaliana nitrilase activity, which exceeds that of the transgenic plants, would be sufficient to meet the requirements for auxin biosynthesis in vivo.  相似文献   

11.
N-acetylglucosaminyltransferase II (GnTII, EC 2.4.1.143) is a Golgi enzyme involved in the biosynthesis of glycoprotein-bound N-linked oligosaccharides, catalysing an essential step in the conversion of oligomannose-type to complex N-glycans. GnTII activity has been detected in both animals and plants. However, while cDNAs encoding the enzyme have already been cloned from several mammalian sources no GnTII homologue has been cloned from plants so far. Here we report the molecular cloning of an Arabidopsis thalianaGnTII cDNA with striking homology to its animal counterparts. The predicted domain structure of A. thalianaGnTII indicates a type II transmembrane protein topology as it has been established for the mammalian variants of the enzyme. Upon expression of A. thalianaGnTII cDNA in the baculovirus/insect cell system, a recombinant protein was produced that exhibited GnTII activity.  相似文献   

12.
Nitrilase (nitrile aminohydrolase, EC 3.5.5.1) catalyzes the hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). Arabidopsis thaliana genome has four nitrilase genes (NIT1, NIT2, NIT3 and NIT4). Three (NIT1, NIT2 and NIT3) of the four genes have high similarity. We have cloned two NIT4 homologs (TNIT4A and TNIT4B) from tobacco (Nicotiana tabacum). Genomic Southern hybridization, among other experiments, strongly suggests that tobacco has NIT4 homologs but not NIT1 to NIT3 homologs. Introduction of Arabidopsis NIT2 into tobacco conferred IAN-mediated growth inhibition, probably due to hydrolysis of IAN to IAA, while ectopic expression of TNIT4A had little effect on the sensitivity of transgenic plants to IAN. Nitrilase activity of TNIT4 proteins is discussed.  相似文献   

13.
 Synthesis of five different Sudan-β-d-glucuronides (I, II, III, IV, and RedB) was performed by condensation of a set of red Sudan diazo dyes with methyl (1-deoxy-2,3,4-tri-O-acetyl-1-trichloroacetimidoyl-α-d-glucopyran)uronate. After the acid and alcohol groups had been deprotected, the resulting compounds were used for histochemical localization of β-glucuronidase (GUS) activity in transgenic plants (Petunia hybrida, Arabidopsis thaliana, and Nicotiana tabacum) that contained the GUS reporter system. Because the cleavage of the β-glucuronide results in the liberation of an insoluble Sudan dye, Sudan substrates gave no diffusion artifacts as described for the commonly used 5-bromo-4-chloro-3-indolyl-β-d-glucuronide (X-gluc). A comparison of assays with different Sudan glucuronides and X-gluc demonstrated that the SudanIV variant is a valuable glucuronide substrate for the precise histochemical localization of GUS activity in transgenic plants. Received: 9 December 1999 / Revision received: 25 January 2000 / Accepted: 26 January 2000  相似文献   

14.
Müller A  Weiler EW 《Planta》2000,211(6):855-863
 The tryptophan auxotroph mutant trp3-1 of Arabidopsis thaliana (L.) Heynh., despite having reduced levels of l-tryptophan, accumulates the tryptophan-derived glucosinolate, glucobrassicin and, thus, does not appear to be tryptophan-limited. However, due to the block in tryptophan synthase, the mutant hyperaccumulates the precursor indole-3-glycerophosphate (up to 10 mg per g FW). Instability of indole-3-glycerophosphate leads to release of indole-3-acetic acid (IAA) from this metabolite during standard workup of samples for determination of conjugated IAA. The apparent increase in “conjugated IAA” in trp3-1 mutant plants can be traced back entirely to indole-3-glycerophosphate degradation. Thus, the levels of neither free IAA nor conjugated IAA increase detectably in the trp3-1 mutant compared to wild-type plants. Precursor-feeding experiments to shoots of sterile-grown wild-type plants using [2H]5-l-tryptophan have shown incorporation of label from this precursor into indole-3-acetonitrile and indole-3-acetic acid with very little isotope dilution. It is concluded that Arabidopsis thaliana shoots synthesize IAA from l-tryptophan and that the non-tryptophan pathway is probably an artifact. Received: 1 March 2000 / Accepted: 10 April 2000  相似文献   

15.
Sudan C  Prakash S  Bhomkar P  Jain S  Bhalla-Sarin N 《Planta》2006,224(4):853-864
The enzyme β-glucuronidase (GUS) is well characterized in animals and microbes. However, this enzyme is not well studied in plants and is widely assumed to be absent in them. In this study we document the ubiquitous presence of GUS in the model plants Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum and Zea mays and record its expression pattern. The pH of the assay buffer was found to be critical with pH 4.0 being optimum for detection in all the species. GUS in plants appears to be associated with growth. In general, younger regions of the organs showed more GUS activity than the older and more mature tissues. In Brassica juncea roots stained for GUS, intense blue color could be seen in the trichoblast cells and the growing root hair cells as compared to the non-root hair forming epidermal cells or the fully elongated root hairs. Cotton fibers showed high GUS activity during the initial phase of elongation while the seed coat, from which the fibers formed, did not stain for GUS activity. The activity in the fibers disappeared after they were fully elongated. The level of GUS activity increased 2.58 folds in leaf tissues of N. tabacum when cultured in MS medium supplemented with 6-benzylaminopurine, while gibberellic acid enhanced GUS activity 2.9 folds in the inter-nodal regions of rice in 12-h treatment. In addition, elongation of stem, root and root hairs in tobacco seedlings was strongly inhibited by the specific inhibitor of GUS, saccharo-1-4-lactone in a reversible manner. Taken together, these evidences suggest a probable association of plant GUS in cell growth.Charu Sudan and Shiva Prakash, the first two authors, have contributed equally.  相似文献   

16.
The expression of nitrilase in Arabidopsis during the development of the clubroot disease caused by the obligate biotroph Plasmodiophora brassicae was investigated. A time course study showed that only during the exponential growth phase of the clubs was nitrilase prominently enhanced in infected roots compared with controls. NIT1 and NIT2 are the nitrilase isoforms predominantly expressed in clubroot tissue, as shown by investigating promoter-beta-glucuronidase fusions of each. Two peaks of beta-glucuronidase activity were visible: an earlier peak (21 d post inoculation) consisting only of the expression of NIT1, and a second peak at about 32 d post inoculation, which predominantly consisted of NIT2 expression. Using a polyclonal antibody against nitrilase, it was shown that the protein was mainly found in infected cells containing sporulating plasmodia, whereas in cells of healthy roots and in uninfected cells of inoculated roots only a few immunosignals were detected. To determine which effect a missing nitrilase isoform might have on symptom development, the P. brassicae infection in a nitrilase mutant (nit1-3) of Arabidopsis was investigated. As a comparison, transgenic plants overexpressing NIT2 under the control of the cauliflower mosaic virus 35S promoter were studied. Root galls were smaller in nit1-3 plants compared with the wild type. The phenotype of smaller clubs in the mutant was correlated with a lower free indole-3-acetic acid content in the clubs compared with the wild type. Overexpression of nitrilase did not result in larger clubs compared with the wild type. The putative role of nitrilase and auxins during symptom development is discussed.  相似文献   

17.
Two Rhodococcal isolates, one possessing a nitrile hydratase and an amidase enzyme, the other an aliphatic nitrilase enzyme have been isolated. The kinetic constants for the enzymes in each isolate have been determined. This data coupled with stability tests indicate that Rhodococcus ruber NCIMB 40757, the nitrilase containing organism, should be an excellent biocatalyst for the commercial production of ammonium acrylate. This is confirmed by a fed-batch bioconversion to produce 5.7 M ammonium acrylate.  相似文献   

18.
Previously it was shown that transient chloramphenicol acetyltransferase (CAT) marker gene expression in Arabidopsis thaliana and Nicotiana tabacum resulted in significant differences in the accumulation of the CAT reaction products in radioactive CAT assays. Compared to Nicotiana tabacum, conversion of chloramphenicol to the acetylated products in Arabidopsis thaliana extracts was rather low. Here we report that the low CAT enzyme activity can be attributed in part to a heat sensitive CAT inhibitory effect in extracts of Arabidopsis thaliana. CAT enzyme activity in transgenic tobacco is inhibited by extracts from Arabidopsis. This inhibitory effect diminishes when Arabidopsis extracts were heat incubated. CAT activity in transgenic Arabidopsis lines was very low and was only detected in heat incubated extracts. Alternatively, enzyme-linked immunosorbent assays (ELISAs) can be used to detect the CAT protein in transgenic Arabidopsis.Abbreviations CAT chloramphenicol acetyltransferase - CAM chloramphenicol - ELISA enzyme linked immunosorbent assay  相似文献   

19.
A Gram-negative bacterial strain, identified as Acidovorax facilis strain 72W, has been isolated from soil by enrichment using 2-ethylsuccinonitrile as the sole nitrogen source. This strain grows on a variety of aliphatic mono- and dinitriles. Experiments using various heating regimes indicate that nitrile hydratase, amidase and nitrilase activities are present. The nitrilase is efficient at hydrolyzing aliphatic dinitriles to cyanoacid intermediates. It has a strong bias for C3–C6 dinitriles over mononitriles of the same chain length. Whole, resting cell hydrolysis of 2-methylglutaronitrile results in 4-cyanopentanoic acid and 2-methylglutaric acid as the major products. Heating, at least 20 min at 50 °C, eliminates nitrile hydratase and amidase activities, resulting in greater than 97% selectivity to 4-cyanopentanoic acid. The nitrilase activity has good heat stability, showing a half-life of 22.7 h at 50 °C and a temperature optimum of at least 65 °C for activity. The strain has been deposited as ATCC 55746. Received: 26 January 1999 / Received revision: 10 June 1999 / Accepted: 27 June 1999  相似文献   

20.
The occurrence of four l-alanine:2-oxoglutarate aminotransferase (AOAT) isoenzymes (AOAT-like proteins): alanine aminotransferase 1 and 2 (AlaAT1 and AlaAT2, EC 2.6.1.2) and l-glutamate:glyoxylate aminotransferase 1 and 2 (GGAT1 and GGAT2, EC 2.6.1.4) was demonstrated in Arabidopsis thaliana leaves. These enzymes differed in their substrate specificity, susceptibility to pyridoxal phosphate inhibitors and behaviour during molecular sieving on Zorbax SE-250 column. A difference was observed in the electrostatic charge values at pH 9.1 between GGAT1 and GGAT2 as well as between AlaAT1 and AlaAT2, despite high levels of amino acid sequence identity (93 % and 85 %, respectively). The unprecedented evidence for the monomeric structure of both AlaAT1 and AlaAT2 is presented. The molecular mass of each enzyme estimated by molecular sieving on Sephadex G-150 and Zorbax SE-250 columns and SDS/PAGE was approximately 60 kDa. The kinetic parameters: Km (Ala)=1.53 mM, Km (2-oxoglutarate)=0.18 mM, kcat=124.6 s−1, kcat/Km=8.1 × 104 M−1·s−1 of AlaAT1 were comparable to those determined for other AlaATs isolated from different sources. The two studied GGATs also consisted of a single subunit with molecular mass of 47.3–70 kDa. The estimated Km values for l-glutamate (1.2 mM) and glyoxylate (0.42 mM) in the transamination catalyzed by putative GGAT1 contributed to indentification of the enzyme. Based on these results we concluded that each of four AOAT genes in Arabidopsis thaliana leaves expresses different AOAT isoenzyme, functioning in a native state as a monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号