首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The ability of the kidney to excrete sodium appears to depend on release of dopamine from intrarenal sources. In the present study, we have used immunohistochemistry to examine the possibility that renal dopaminergic nerves constitute one of these sources. We found that the sympathetic axons supplying cortical structures in human kidney contain tyrosine hydroxylase-like immunoreactivity but lack DOPA decarboxylase-like immunoreactivity. By contrast, the vasa recta arterioles of the renal medulla are supplied by varicose tyrosine hydroxylase-positive nerve fibres, some of which also contain DOPA decarboxylase. As DOPA decarboxylase has been demonstrated in other situations to be a selective marker for dopaminergic terminal axons, our results suggest the innervation of renal medullary blood vessels in man by both noradrenergic and dopaminergic sympathetic nerves.  相似文献   

2.
This study was undertaken to determine whether immuno-histochemical staining for DOPA decarboxylase (DDC) is present in axons of rat noradrenergic sympathetic neurons. A sparse plexus of varicose axons exhibiting DDC-like immunoreactivity (DDC-IR) was associated with blood vessels and acini in the submandibular gland, but this was much less extensive than the population that exhibited tyrosine hydroxylase-like immunoreactivity (TH-IR). The varicose terminal TH-IR axons in atrium, spleen, and vas deferens were devoid of DDC-IR both in grown rats and during the post-natal period of axon growth, although weak DDC-IR was seen in large pre-terminal nerve bundles. Similar patterns of staining were seen with paraffin-embedded and with frozen, formaldehyde-fixed material. No enhancement of DDC-IR was seen in any tissue after chronic alteration of catecholamine turnover with reserpine or alpha-methyl-para-tyrosine, and the numbers of submandibular DDC-IR axons were not increased by disruption of axonal transport with colchicine or by decentralization of the superior cervical ganglion. We conclude that terminal noradrenergic axons contain insufficient DDC-IR for microscopic visualization, regardless of their metabolic state, reinforcing previous evidence that DDC-IR can be used as a histochemical marker for dopaminergic axons. By this criterion, the rat submandibular gland may receive a sparse dopaminergic innervation.  相似文献   

3.
Three ultrastructural cytochemical methods have been used to classify the innervation of the rat renal cortex. Every axon seen contained chromaffin-reactive, dense core vesicles and stained for tyrosine hydroxylase, indicating that they were all catecholaminergic. About 10% of the axons associated with smooth muscle and juxtaglomerular cells of the arteriolar vessels also contained dopa decarboxylase, but this enzyme was not present in any of the peritubular axons. Our results are compatible with the possibility that, in the rat, the juxtaglomerular blood vessels, but not the renal tubules, are supplied by dopaminergic as well as by noradrenergic nerves.  相似文献   

4.
In order to clarify further the neural control of digestive tract function, we have compared the neuronal localization of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) in rat small intestine. Immunoreactivity for TH was found in numerous varicose axons associated with neurons of the enteric plexuses and in axons within the circular muscular coat and the mucosal villi. Axons with AADC immunoreactivity had a similar distribution, but were sparser in the enteric plexuses and musculature than those containing TH. Chronic extrinsic denervation of a segment of intestine removed all TH-positive nerves from that region. By contrast, the intensity of AADC immunoreactivity was enhanced and more AADC-positive axons were visible than in adjacent intact areas of intestine. The AADC-positive axons appear to represent the intrinsic 'amine-handling' neurons rather than intrinsic tryptaminergic neurons or extrinsic dopaminergic neurons, and the effect on AADC activity of removing the extrinsic nerve supply suggests that this normally exerts some restraining influence on the metabolism of the 'amine-handling' population.  相似文献   

5.
An on-line microdialysis system was developed which monitored the 3,4-dihydroxyphenylalanine (DOPA) formation in the striatum during infusion of a submicromolar concentration of an L-aromatic amino-acid decarboxylase inhibitor (NSD 1015). The absence of DOPA in dialysates of 6-hydroxydopamine-pretreated rats and the disappearance of DOPA after administration of alpha-methyl-p-tyrosine indicated that the dialyzed DOPA was derived from dopaminergic nerve terminals. Next we investigated whether the steady-state DOPA concentration in striatal dialysates could be considered as an index of tyrosine hydroxylase activity. The increase in DOPA output after intraperitoneal administration of haloperidol or gamma-butyrolactone and the decrease in DOPA output after intraperitoneal administration of apomorphine are in excellent agreement with results of postmortem studies, in which a decarboxylase inhibitor was used to measure the activity of tyrosine hydroxylase. The effect of haloperidol on DOPA formation was not visible when a U-shaped cannula (0.80 mm o.d.) was used. Some methodological problems related to microdialysis of the haloperidol-induced increase in DOPA formation are discussed. We concluded that the proposed model is a powerful and reliable in vivo method to monitor tyrosine hydroxylase activity in the brain. The method is of special interest for investigating the effect of compounds which are not able to pass the blood-brain barrier. As an application of the method in the latter situation, we report the effect of infusion the neurotoxin 1-methyl-4-phenylpyridinium ion (10 mmol/L infused over 20 min) on the activity of striatal tyrosine hydroxylase.  相似文献   

6.
The cutaneous nerves of rat, cat, guinea pig, pig, and man were studied by immunocytochemistry to compare the staining potency of general neural markers and to investigate the density of nerves containing peptides. Antiserum to protein gene product 9.5 (PGP 9.5) stained more nerves than antisera to neurofilaments, neuron-specific enolase (NSE), and synaptophysin or histochemistry for acetylcholinesterase (AChE). Peptidergic axons showed species variation in density of distribution and were most abundant in pig and fewest in man. However, the specific peptides in nerves innervating the various structures were consistent between species. Nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP) and/or vasoactive intestinal polypeptide (VIP) predominated in all the species; those immunoreactive to tachykinins (substance P and neurokinin A [NKA]) and neuropeptide tyrosine (NPY) were less abundant. Neonatal capsaicin, at the doses employed in this study, destroyed approximately 70% of CGRP- and tachykinin-immunoreactive sensory axons; whereas 6-hydroxydopamine (6-OHDA) at the doses employed resulted in a complete loss of NPY and tyrosine hydroxylase (TH) immunoreactivity without affecting VIP, CGRP, and tachykinins. Thus, this study confirms that antiserum to PGP 9.5 is the most suitable and practical marker for the demonstration of cutaneous nerves. Species differences exist in the density of peptidergic innervation, but apparently not for specific peptides. Not all sensory axons immunoreactive for CGRP and substance P/NKA are capsaicin-sensitive. However, all sympathetic TH- and NPY-immunoreactive axons are totally responsive to 6-OHDA; but no change was seen in VIP-immunoreactive axons, suggesting some demarcation of cutaneous adrenergic and cholinergic sympathetic fibers.  相似文献   

7.
The metabolic transformation of tyrosine (TYR) by the decarboxylase and hydroxylase enzymes was investigated in the central nervous system of the locust, Locusta migratoria. It has been demonstrated that the key amino acids, 3,4-dihydroxyphenylalanine (DOPA), 5-hydroxytryptophan (5HTP) and tyrosine are decarboxylated in all part of central nervous system. DOPA and 5HTP decarboxylase activities show parallel changes in the different ganglia, but the rank order of the activity of TYR decarboxylase is different. Enzyme purification has revealed that the molecular weights of TYR decarboxylase and DOPA/5HTP decarboxylase are 370,000 and 112,000, respectively. The decarboxylation of DOPA by DOPA/5HTP decarboxylase is stimulated, whereas the decarboxylation of DOPA by TYR decarboxylase is inhibited in the presence of the cofactor pyridoxal-5'-phosphate. TYR hydroxylase could not be detected and 3H-TYR is found to be metabolised to tyramine (TA), but not to DOPA. The haemolymph contains a significant concentration of DOPA (120 pmol/100 microl haemolymph), and the ganglia incorporates DOPA from the haemolymph by a high affinity uptake process (K(M)=12 microM and V(max)=24 pmol per ganglion/10 min). Our results suggest that no tyrosine hydroxylase is present in the locust CNS and the DOPA uptake into the ganglia by a high affinity uptake process as well as the DOPA decarboxylase enzyme may be responsible for the regulation of the ganglionic dopamine (DA) level. Two types of decarboxylases exist, one of them decarboxylating DOPA and 5HTP (DOPA/5HTP decarboxylase), other decarboxylating TYR (TYR decarboxylase). The DOPA/5HTP decarboxylase enzyme present in the insect brain may correspond to the 5HTP/DOPA decarboxylase in vertebrate brain, whereas TYR decarboxylase is characteristic only for the insect brain.  相似文献   

8.
Summary High performance liquid chromatography (HPLC), with electrochemical detection, is an analytical method sensitive enough to permit quantification of dopamine, dihydroxyphenylalanine (DOPA) and 5-S-cysteinyl DOPA in single or hemisected specimens ofHydra attenuata. Dopamine and 5-S-cysteinylDOPA appear to be the quantitatively predominant catechol compounds inH. attenuata, whereas DOPA is present in minor amounts. The presence of DOPA and 5-S-cysteinylDOPA, and the quantitative correlation between dopamine and these compounds in many specimens, suggests that dopamine inH. attenuata, as in higher animals, is formed through decarboxylation of DOPA. Contrary to the dopaminergic nerves in higher animals, DOPA inHydra seems to be oxidized and 5-S-cysteinyl DOPA is formed as a by-product. The oxidation of DOPA indicates that the hydroxylation of tyrosine into DOPA in the tissues ofH. attenuata is mediated by a tyrosinase rather than a tyrosine hydroxylase. Immunocytochemical methods demonstrate a highly variable distribution of dopamine in the tissues of different specimens ofH. attenuata. Dopamine immunoreactivity is confined to ectodermal tissue and can be found in several different cell types including nerve cells, battery cells, nematocytes, epithelial cells and interstitial undifferentiated cells. The large amounts of dopamine found in some specimens ofH. attenuata indicate some biological function, although its sporadic occurrence in neurites makes it less plausible as a generally utilized neurotransmitter in this animal.  相似文献   

9.
Although the presence of neurotrophin p75 receptor on sympathetic nerves is a well-recognised feature, there is still a scarcity of details of the distribution of the receptor on cerebrovascular nerves. This study examined the distribution of p75 receptor on perivascular sympathetic nerves of the middle cerebral artery and the basilar artery of healthy young rats using immunohistochemical methods at the laser confocal microscope and transmission electron microscope levels. Immunofluorescence methods of detection of tyrosine hydroxylase (TH) in sympathetic nerves, p75 receptor associated with the nerves, and also S-100 protein in Schwann cells were applied in conjunction with confocal microscopy, while the pre-embedding single and double immunolabelling methods (ExtrAvidin and immuno-gold-silver) were applied for the electron microscopic examination. Immunofluorescence studies revealed “punctuate” distribution of the p75 receptor on sympathetic nerves including accompanying Schwann cells. Image analysis of the nerves showed that the level of co-localization of p75 receptor and TH was low. Immunolabelling applied at the electron microscope level also showed scarce co-localization of TH (which was intra-axonal) and p75. Immunoreactivity for p75 receptor was present on the cell membrane of perivascular axons and to a greater extent on the processes of accompanying Schwann cells. Some Schwann cell processes were adjacent to each other displaying strong immunoreactivity for p75 receptor; immunoreactivity was located on the extracellular sites of the adjacent cell membranes suggesting that the receptor was involved in cross talk between these. It is likely that variability of locations of p75 receptor detected in the study reflects diverse interactions of p75 receptor with axons and Schwann cells. It might also imply a diverse role for the receptor and/or the plasticity of sympathetic cerebrovascular nerves to neurotrophin signalling.  相似文献   

10.
Summary In order to clarify further the neural control of digestive tract function, we have compared the neuronal localization of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) in rat small intestine. Immunoreactivity for TH was found in numerous varicose axons associated with neurons of the enteric plexuses and in axons within the circular muscular coat and the mucosal villi. Axons with AADC immunoreactivity had a similar distribution, but were sparser in the enteric plexuses and musculature than those containing TH. Chronic extrinsic denervation of a segment of intestine removed all TH-positive nerves from that region. By contrast, the intensity of AADC immunoreactivity was enhanced and more AADC-positive axons were visible than in adjacent intact areas of intestine. The AADC-positive axons appear to represent the intrinsic amine-handling neurons rather than intrinsic tryptaminergic neurons or extrinsic dopaminergic neurons, and the effect on AADC activity of removing the extrinsic nerve supply suggests that this normally exerts some restraining influence on the metabolism of the amine-handling population.  相似文献   

11.
Summary Two cytochemical techniques were used at the ultrastructural level to study the distribution of specific axon types to different intrarenal structures in the dog. Using the chromaffin reaction to distinguish catecholaminergic fibres from other axon populations, it was found that the renal cortex of the dog is supplied only by catecholaminergic nerves. Immunostaining for tyrosine hydroxylase (TH) labelled all of the intracortical nerves, and 20% to 25% of these profiles also contained dopa decarboxylase (DDC)-immunoreactivity, indicating they were dopaminergic rather than noradrenergic. Both DDC-positive and DDC-negative axons were seen in close association (80 nm) with blood vessels and juxtaglomerular cells as well as tubular epithelial cells. The distribution of TH- and DDC-immunoreactive nerves in the renal cortex is compatible with existing functional evidence indicating that both dopaminergic and noradrenergic nerves are involved in the regulation of renal blood flow, tubular reabsorption and renin release.  相似文献   

12.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

13.
Entry of dihydroxyphenylalanine (DOPA) into plasma from specific organs may reflect regional activity of tyrosine hydroxylase, the enzyme responsible for the immediate synthesis of DOPA and rate-limiting for subsequent formation of catecholamines. Therefore, cardiac spillovers of DOPA, noradrenaline and the intraneuronal metabolite of noradrenaline, dihydroxyphenylglycol (DHPG), were examined during two periods of graded electrical stimulation of the sympathetic nerves to the heart in anesthetized dogs. Responses were examined before and after neuronal uptake blockade with desipramine. Cardiac spillover of DOPA increased by 1.8- and 4.4-fold during sympathetic stimulation before desipramine and by 1.6- and 3.3-fold after desipramine. Fold increases in cardiac spillover of DOPA were much lower than but positively related with fold increases in noradrenaline spillover (5.9- and 13.8-fold increases before and 9.0- and 15.8-fold increases after desipramine). Increases in cardiac spillover of DHPG (1.5- and 2.3-fold increases) were blocked by desipramine so that fold changes in spillover of DOPA were greater than and poorly related to changes in spillover of DHPG. Fold increases in cardiac spillover of DOPA showed a close one-to-one positive relationship with fold increases in the sum of cardiac spillovers of noradrenaline and dihydroxyphenylglycol before and after desipramine. For a given fold increase in noradrenaline release, transmitter turnover is increased fractionally and noradrenaline synthesis need also only increase fractionally to maintain transmitter stores constant. The close relationship between fold increases in cardiac spillover of DOPA and combined spillovers of noradrenaline and DHPG is consistent with regulation of tyrosine hydroxylase activity to match changes in noradrenaline synthesis with changes in noradrenaline turnover. Changes in cardiac spillover of DOPA appear to reflect local changes in tyrosine hydroxylase activity.  相似文献   

14.
1. Aromatic amino acid decarboxylase activities toward L-DOPA (L-3,4-dihydroxyphenylalanine), 5-HTP (5-hydroxytryptophan) and p-tyrosine in different tissues of the sclerotized and newly ecdysed cockroach were analyzed. 2. The ratios of enzyme activity with regard to L-DOPA and p-tyrosine varied considerably in the tissues and between the two different growth stages. 3. A DOPA decarboxylase and a p-tyrosine decarboxylase were separated by gel filtration and ion exchange chromatography. 4. The optimal pH requirement for both enzymes was 7.5 with the exception of the one decarboxylating 5-HTP. 5. The molecular weights of the cockroach brain DOPA decarboxylase and tyrosine decarboxylase were estimated to be 120,000 and 100,000, respectively. 6. Unlike the mammalian aromatic amino acid decarboxylase, the cockroach DOPA decarboxylase cannot be activated by a small amount of benzene. 7. An increase of over 50-fold of DOPA decarboxylase activity and a 50% reduction of tyrosine decarboxylase activity in the epidermal tissue of the newly ecdysed animals was observed. 8. In the fully sclerotized cockroach, a reversible endogenous inhibitor(s) of DOPA decarboxylase in the integument was observed, suggesting that the DOPA decarboxylase is suppressed in the epidermal tissues when ecdysis does not occur.  相似文献   

15.
M Ahonen 《Histochemistry》1991,96(6):467-478
In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia and only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

16.
Summary In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia ond only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

17.
Abstract— Studies were made on the regulation of dopamine metabolism in a cell line derived by hydridization of a non-tyrosine-hydroxylase-containing line of murine neuroblastoma cells with a neur-onally-enriched population of murine embryonic sympathetic ganglion cells. Hybrid subclones with tyrosine hydroxylase activity were selected by exposure to tyrosine-free medium. The cells also exhibited DOPA decarboxylase activity and the subclone (named T28) with the highest specific activities of both enzymes was further characterized. The hybrid T28 line did not contain dopamine-β-hydroxylase activity. The specific activity of tyrosine hydroxylase as well as of DOPA decarboxylase increased significantly in T28 cultures when the cells entered the stationary phase of growth. Both of these enzymes were also induced after several days of exposure to 1 m m -dibutyryl cyclic AMP in culture medium containing either 5% or 0.8% serum. However, maintenance in medium containing 0.8% serum alone, which inhibited cell multiplication, did not induce either enzyme. The dopamine content of T28 cells was also regulated as a function of cell density. High density (stationary phase) cultures of T28 cells contained about 300 pmol dopamine per mg protein and at least half of this endogenous amine appeared to he stored in vesicles or granules (as judged by depletion with reserpine or α-methyl- m -tyramine). The T28 and other neuronal hybrid lines appear to be useful model systems for neuro-chemical studies.  相似文献   

18.
Cryostat- and vibratome-cut sections of rat kidneys were singly or doubly labeled to visualize immunoreactive tyrosine hydroxylase (THI), dopamine beta-hydroxylase (DBHI), vasoactive intestinal peptide (VIPI), and neuropeptide Y (NPYI). Rats were perfusion fixed with 2-4% paraformaldehyde with or without 0.15% picric acid and rinsed in buffer for 18-48 hr. Single antigens were labeled with horseradish peroxidase in vibratome sections, whereas cryostat sections were used to label one antigen with peroxidase and another with a fluorophore in the same tissue section. A dense plexus of DBHI noradrenergic nerves innervates the renal arterial tree, and such nerves innervate the interlobar veins and renal calyx as well. Immunoreactive NPY is colocalized in most of these nerves, but some intrarenal noradrenergic nerves do not contain NPY but do contain VIP immunoreactivity. The distribution of NPYI nerves resembles that of DBHI nerves, whereas most perivascular noradrenergic nerves immunoreactive for VIP innervate selected arcuate and interlobular arteries. A small population of nonadrenergic, VIPI nerves innervates the renal calyx.  相似文献   

19.
The distribution of nitric oxide synthase-immunoreactive (NOS-IR) axons and their relationship to structures immunoreactive to vasoactive intestinal polypeptide (VIP), substance P (SP) and tyrosine hydroxylase (TH) were studied by means of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) technique or double-labelling immunofluorescence in the genital organs of cow and pig. Relevant neurons were also investigated in the pig. NOS-containing neural structures were TH-immunonegative in bovine or porcine genital organs, or in the studied ganglia. In the bovine ovary, NOS-IR nerves were neither VIP-IR nor SP-IR, whereas in the pig, most NOS-containing axons were also VIP-IR. The oviduct was supplied by single NOS/VIP- or NOS/SP-containing nerves, whereas in the uterus, NOS-IR axons were moderate in number, often being immunoreactive for VIP or SP. Numerous NOS/VIP-IR and NOS/SP-IR nerves were found in the vagina of both species. In all tissues studied, NOS-IR axons were mainly related to vascular smooth muscle. Most of the neurons of the paracervical ganglia and some neurons in dorsal root ganglia exhibited strong NOS activity. Only single neurons in sympathetic ganglia were NADPH-d-positive. Most nitrergic neurons in the autonomic ganglia were VIP-IR but SP-immunonegative. The sensory neurons were mostly NOS/SP-IR, whereas only single neurons co-expressed NOS and VIP immunoreactivity.  相似文献   

20.
Summary In order to distinguish the effects of genetic sex from those of sex hormones on the sexual differentiation of dopaminergic neurons, catecholamine synthesis was studied in gender-specific cultures of embryonic day-14 rat diencephalon. In addition to embryos from normal dams, embryos were used whose mothers had been treated with the estrogen antagonist tamoxifen or the testosterone antagonist cyproterone acetate on days 12 and 13 of gestation. Cultures from embryos of untreated dams were fed daily with a medium containing 17-estradiol or testosterone. After 10 days in vitro, cultures were immunostained for tyrosine hydroxylase and the accumulation of dihydroxyphenylalanine (DOPA) was measured in the presence of the DOPA decarboxylase inhibitor NSD 1015. Rates of DOPA synthesis, unlike the numbers of tyrosine hydroxylase-immunoreactive neurons, were markedly higher in female cultures under all experimental conditions. Treatment of dams with antisteroids prior to removal of the embryos had no influence on these results. Treatment of cultures with both steroids decreased DOPA formation in a dose-dependent manner without altering the sex difference. These results suggest that cultured diencephalic dopaminergic neurons develop sex differences in the activity of tyrosine hydroxylase. This sexual dimorphism is initiated independently of the action of gonadal steroid hormones. Sex hormones exert an additional modulatory influence on the activity of the enzyme but do not abolish or reverse sex differences. Therefore, the concept of a purely epigenetic mode of sexual differentiation of the mammalian brain needs to be broadened to incorporate other mechanisms, such as the cell-autonomous fulfillment of a sex-specific genetic program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号