首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In ovarian follicles of Oncopeltus fasciatus, and of Xylocopa virginica, calmodulin (CaM) of epithelial cell origin is required by oocytes for endocytic uptake of yolk precursor molecules. Furthermore, this 17-19 kDa protein is normally transported to the oocytes via gap junctions. Downregulation of gap junctions by treatment with 1 mM octanol or separation of the epithelial cells from their oocytes terminated precursor uptake, and this activity could be rescued by microinjection of 60 microM CaM, but not by injections of incubation medium, nor solutions of other molecular species tested. That endogenous CaM is required was confirmed by incubating otherwise untreated follicles in physiological salt solution (PSS) containing either calmidazolium or W-7, both known antagonists of CaM. By radioimmunoprecipitation, we show that the epithelial cells surrounding an oocyte synthesized 15 times as much calmodulin as did the oocytes they encircled. Neither octanol-treated follicles nor denuded oocytes incubated in medium containing calmodulin were able to resume endocytosis, arguing against an extracellular route. However, fluorescently labeled calmodulin microinjected into oocytes is shown to have crossed through gap junctions, making epithelial cells distinctly fluorescent.  相似文献   

2.
In insect gap junctions, species-specific differences occur in response to the purported gap junction uncoupling agent, 1-octanol. Changes in gap junctional communication between oocytes and their epithelial cells following treatment with 1-octanol were assayed in Oncopeltus fasciatus (the milkweed bug), Hyalophora cecropia (the American silk moth), and Drosophila melanogaster. In all three species, microinjection of untreated control follicles with Lucifer yellow CH revealed extensive dye coupling among epithelial cells and between epithelial cells and their oocytes. Also for all three species, treatment with octanol appeared to completely block dye coupling and increase oocyte input resistance. The effect on electrical coupling varied. In Drosophila, octanol diminished the electrical coupling from 64% (0.64 coupling coefficient) in controls to 53% in treated follicles. In Hyalophora, the coupling ratio remained the same following treatment. In Oncopeltus, octanol actually increased the electrical coupling ratio from 84% in controls to 94% in treated follicles. While 0.5 mM octanol left some Oncopeltus epithelial cells dye coupled to the oocyte, the electrical coupling ratio was increased slightly more by this concentration than by 1 or 5 mM octanol solutions, although the differences were not significant. While input resistance (R(o )) increased in all three following treatment with octanol, there was considerable difference in the magnitude of the response. Average oocyte R(o ) for Oncopeltus increased the least of the three species, rising from 196-240 kOhm. Both Hyalophora, with a nearly fourfold increase from 230-900 kOhm or more, and Drosophila, with a twofold increase from 701 kOhm to over 1.2 MegOhm showed much larger changes. Results shown here indicate that insect gap junctions have more varied responses to this common gap junction antagonist than have been reported for their vertebrate counterparts. Arch.  相似文献   

3.
Gap junctions between insect oocytes and follicular epithelial cells allow transit of elongate Ca(2+)-binding proteins Calmodulin (CaM, 17kDa) and Troponin-C (Trop-C, 18kDa), but not multi-branched dextran (10kDa) nor the Ca(2+)-binding protein Osteocalcin (Osteo, 6kDa). By microinjection of fluorescently labeled versions of each of these molecules we were able to obtain visual evidence that, despite their lesser molecular weight, molecules with greater cross-sections were unable to transit these gap junctions, while heavier but elongate molecules could. While CaM had previously been shown to pass through gap junctions from oocytes to their surrounding epithelial cells, the ability of CaM and Trop-C to transit the gap junctions between adjacent epithelial cells had not been demonstrated. Evidence shown here demonstrates that the homologous gap junctions among epithelial cells, like the heterologous gap junctions between epithelial cells and the oocyte they surround, allow transit of elongate molecules up to at least 18kDa. Furthermore, the evidence for four different molecules of differing molecular weights and configurations supports the hypothesis that it is molecular configuration, not chemical activity, that primarily determines the observed permeability of gap junctions to molecules 5-6 times larger than the molecular weight limit previously acknowledged.  相似文献   

4.
An ovarian follicle of Drosophila consists of an oocyte, 15 nurse cells, and hundreds of follicular epithelial cells. A freeze-fracture analysis of the surfaces between glutaraldehyde-fixed ovarian cells showed that all three cell types were interconnected by gap junctions. This is the first report of gap junctions between adjacent nurse cells, between nurse cells and oocytes, and between follicle cells and oocytes in Drosophila. Since we did not observe intramembranous particle clumping into crystalline patterns and since structurally different gap junctions occurred at different times in development and at different cell-cell interfaces, it is unlikely that fixation artifacts influenced particle distribution in our experiments. A computer-assisted morphometric analysis showed that the extent, size, and morphology of gap junctions varied with development and that these junctions can cover up to 9% of the cell surfaces. To test the role of gap junctions in follicular maturation, we studied ovaries from flies homozygous for the female sterile mutation fs(2)A17, in which follicles develop normally until yolk deposition commences. During the development of mutant follicles, gap junctions became abnormal before any other morphological aspect of the follicle. These studies show that gap junctions are available to play an important role in coordinating intercellular activities between all three cell types in ovarian follicles of Drosophila.  相似文献   

5.
The ovarian follicle in mammals is a functional syncytium, with the oocyte being coupled with the surrounding cumulus granulosa cells, and the cumulus cells being coupled with each other and with the mural granulosa cells, via gap junctions. The gap junctions coupling granulosa cells in mature follicles contain several different connexins (gap junction channel proteins), including connexins 32, 43, and 45. Connexin43 immunoreactivity can be detected from the onset of folliculogenesis just after birth and persists through ovulation. In order to assess the importance of connexin43 gap junctions for postnatal folliculogenesis, we grafted ovaries from late gestation mouse fetuses or newborn pups lacking connexin43 (Gja1(-)/Gja1(-)) into the kidney capsules of adult females and allowed them to develop for up to 3 weeks (this was necessitated by the neonatal lethality caused by the mutation). By the end of the graft period, tertiary (antral) follicles had developed in grafted normal (wild-type or heterozygote) ovaries. Most follicles in Gja1(-)/Gja1(-) ovaries, however, failed to become multilaminar, with the severity of the effect depending on strain background. Dye transfer experiments indicated that intercellular coupling between granulosa cells is reduced, but not abolished, in the absence of connexin43, consistent with the presence of additional connexins. These results suggest that coupling between granulosa cells mediated specifically by connexin43 channels is required for continued follicular growth. Measurements of oocyte diameters revealed that oocyte growth in mutant follicles is retarded, but not arrested, despite the arrest of folliculogenesis. The mutant follicles are morphologically abnormal: the zona pellucida is poorly developed, the cytoplasm of both granulosa cells and oocytes is vacuolated, and cortical granules are absent from the oocytes. Correspondingly, the mutant oocytes obtained from 3-week grafts failed to undergo meiotic maturation and could not be fertilized, although half of the wild-type oocytes from 3-week grafted ovaries could be fertilized. We conclude that connexin43-containing gap junction channels are required for expansion of the granulosa cell population during the early stages of follicular development and that failure of the granulosa cell layers to develop properly has severe consequences for the oocyte.  相似文献   

6.
The objective of this study was to examine the effects of follicular cells on the in vitro development of porcine preantral follicles. In Experiment 1, one preantral follicle alone (Trt 1) was cocultured with a follicle of the same size with oocytes (Trt 2) or without oocytes (Trt 3). Preantral follicles cultured alone in vitro for 12 days had greater follicle diameters (1017 +/- 96 microm versus 706 +/- 69 or 793 +/- 72 microm, P < 0.05), growth rates (201 +/- 0.3 versus 103 +/- 0.2 or 128 +/- 0.2, P < 0.05) and oocyte survival rates (73% versus 48, or 25%, P < 0.05) than other groups. The inhibitory effects of follicle cells on the growth of preantral follicles and oocyte survival rates were not enhanced by the addition of oocytectomized preantral follicles (Experiment 2). Follicles were cocultured with different sources of follicular cells in other experiments. Coculture with cumulus cells enhanced oocyte survival compared to the control (without coculture) and mural follicular cell groups (Experiment 3). The growth and survival rates of oocytes collected from the group of follicles cocultured with cumulus cells from large antral follicles (>3 mm) were greater (P < 0.05) than those from small antral follicles (<3 mm), or than the control group (without cumulus cells, experiment 4). No significant differences in the follicular diameters (674 +/- 30 microm versus 638 +/- 33 and 655 +/- 28 microm) and growth rate (105% versus 94 and 105%) were observed among the preantral follicles of the different treatments (P > 0.05). Taken together, coculture with the cells from large antral follicles (>3 mm) exerted a significant positive effect on oocyte survival. The growth and oocyte survival of preantral follicle cocultured with the same size of follicles (with or without oocyte) were inhibited. Growth and survival rates of preantral follicles and oocytes are improved by coculturing them with the cumulus cells derived from larger antral follicles.  相似文献   

7.
Studies were carried out with the golden Syrian hamster to investigate the capacity of follicular fluid to maintain oocyte meiotic arrest and to determine the importance of cumulus-membrana granulosa cell contact in the regulation of meiotic status. The follicular fluid studies were conducted by cytological assessment of meiotic stage up to 6 hr after transferring cumulus-free oocytes into antra of explanted "host" follicles in vitro or into follicles of anesthetized animals prior to the gonadotropin surge at proestrus in vivo. The cumulus-membrana granulosa contact studies were undertaken with explanted follicles in which the oocyte-cumulus complex was dislodged from the underlying membrana granulosa, released into the antrum, and subsequently allowed to reestablish contact during 6 hr of incubation within the follicle. The extent of recontact of the dislodged complex with the underlying membrana granulosa was assessed visually at the end of incubation and was classified as close, moderate, or none. These various degrees of contact typically involved the following number of cumulus cells, as determined by serial sectioning of a representative sample of follicles after dislodgement and subsequent incubation: close, 32.7 +/- 1.78; moderate, 9.0 +/- 2.1; and no contact, 0. After 6 hr of incubation either in vitro or in vivo, few transferred oocytes remained at the germinal vesicle (GV) stage (18.8 +/- 8.7 and 17.3 +/- 4.0% GV, respectively). However, time course experiments revealed that meiotic resumption was significantly delayed in transferred oocytes compared with either liberated oocytes, spontaneously maturing oocytes, or follicle-enclosed oocytes induced to mature by luteinizing hormone in vitro (after 4 hr, transferred, 31.3 +/- 6.0% GV; liberated, 0% GV; follicle-enclosed, 0% GV; after 6 hr, 0% transferred oocytes exhibited a GV). In the dislodgement studies, after 6 hr of incubation, 26% of complexes reestablished close contact with the underlying membrana granulosa, 67% showed moderate contact, while 7% revealed no contact. There was a significant increase in the percentage GV stage oocytes as the extent of recontact increased (no contact, 21.9 +/- 3.6% GV; moderate contact, 56.6 +/- 6.8% GV; close contact, 87.5 +/- 14.4% GV). These data argue in favor of a stringent control of hamster oocyte meiotic status by the follicle cell/oocyte syncytium and against the possibility that follicular fluid is independently responsible for maintaining meiotic arrest.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
中华大蟾蜍卵母细胞成熟过程中膜电位变化的实验分析   总被引:1,自引:0,他引:1  
The full-grown oocytes obtained from toad (bufo bufo gargarizans) submitted in hibernation state or reared at 25-30 degrees C for several months, named hibernation oocyte or high temperature oocyte, had a membrane potential of -41.51 +/- 0.77 mV and -43.83 +/- 1.39 mV in Ringer's solution respectively. The hibernation oocytes underwent GVBD (germinal vesicle breakdown) and membrane depolarization at 19 +/- 1 degree C after progesterone stimulation. The membrane potential was about -20 mV at the period of GVBD, and -10 mV or so at 20 hours after the hormone treatment. However, the high temperature oocytes did not undergo GVBD, their membrane potential decreased before the fourth hour after treatment with progesterone and then recovered. If the hibernation oocytes were preincubated at 37-38 degrees C for 13 hours prior to the culture in the medium containing progesterone (10(-6)M, 37-38 degrees C), no GVBD was observed and the membrane depolarized before the fourth hour after treatment with progesterone then recovered, but MPF was detectable in the cytoplasm (unpublished). Both GVBD and membrane depolarization appeared in the hibernation oocytes and high temperature oocytes after injection of MPF. The time required for the hibernation oocytes injected MPF to attain the membrane potential about -20 mV was 4 hours earlier than that of progesterone treatment. It was just the time required for the appearance of MPF in the cytoplasm of oocytes treated with the hormone. It was noticed in our precedent article that a factor which appeared in the cytoplasm of high temperature oocytes differed from MPF. The factor was called Hibernation Oocyte Mature Promoting Factor (HOMPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of ovary holding time and temperature on granulosa cell apoptosis, oocyte chromatin configuration and cumulus morphology were investigated through a series of experiments. Three experiments were performed to determine the effect of ovary holding time and temperature on granulosa cell apoptosis. Ovaries were held (1) at 20, 30 or 35-37 degrees C for up to 2h, (2) at 30 degrees C for 0-1, 1-2, 2-3, 3-4, 4-6 or 6-10h, and (3) granulosa cells were held for 0, 1, 2, 3, 5, 12 or 24h in M199 with Hank's salts at room temperature (suboptimal incubation). Granulosa cell DNA was analysed by ethidium bromide staining or 3'-end labelling. Two experiments were performed to determine the effect of ovary holding time and temperature on oocyte chromatin configuration. Ovaries were held (1) at 20, 30 or 35-37 degrees C for up to 3h and (2) at 20-37 degrees C for 0-1, 1-2, 2-3, 3-4, 4-6, 6-8 or 8-12h. The oocytes were stained with Hoechst stain 33258 and the chromatin configuration was evaluated. Two experiments were performed to determine the effect of ovary holding time and temperature on cumulus oophorus morphology. Ovaries were held at (1) 20-30 or 35-37 degrees C for up to 2h and (2) for 0-2, 2-4, 4-6, and 6-10h at 35-37 degrees C. The cumulus oocyte complex (COC) were retrieved and the cumulus morphology was evaluated. There was no difference in proportion of follicles with non-apoptotic granulosa cells in the two groups below body temperature (20 and 30 degrees C), but more follicles had apoptotic granulosa cells when the ovaries were held at 35-37 degrees C (P < 0.001). Holding ovaries at 30 degrees C for more than 3h increased the proportion of follicles with apoptotic granulosa cells (P < 0.01). When follicles with non-apoptotic granulosa cells were incubated at room temperature, there was no granulosa cell apoptosis in any of the follicles within the first 3h, but at 5h apoptosis was present in the granulosa cells of 22% of the follicles, and 78% of the follicles contained apoptotic granulosa cells at 24h (P < 0.001). The temperature at which the ovaries were held did not influence oocyte chromatin, although there was a tendency towards more condensed chromatin configurations in the groups below body temperature. More denuded and expanded COCs were present in the lower temperature group (P < 0.001). Oocyte chromatin configuration changed after 6h of holding (P < 0.001), and numbers of compact COCs decreased after 2h (P < 0.05). The present studies suggest that equine follicles should be held for no more than 3h at 20-30 degrees C if granulosa cell apoptosis is to be avoided. To avoid changes in cumulus oophorus morphology, ovaries should be held at 35-37 degrees C and for less than 2h before processing, and to avoid oocyte chromatin configuration changes, ovaries should be stored for less than 6h. When ovaries are to be used in oocyte maturation studies, and assuming that (1) CC is the chromatin configuration of choice for oocyte maturation, (2) that presence of granulosa cell apoptosis promotes maturation of the oocyte and (3) that expanded cumulus oocytes are preferable, the present data suggests that ovaries should be stored for 4-6h before oocyte retrieval.  相似文献   

10.
The aim of the present study was to investigate the physiological role and the expression pattern of heterologous gap junctions during Xenopus laevis vitellogenesis. Dye transfer experiments showed that there are functional gap junctions at the oocyte/follicle cell interface during the vitellogenic process and that octanol uncouples this intercellular communication. The incubation of vitellogenic oocytes in the presence of biotinylated bovine serum albumin (b-BSA) or fluorescein dextran (FDX), showed that oocytes develop stratum of newly formed yolk platelets. In octanol-treated follicles no sign of nascent yolk sphere formation was observed. Thus, experiments in which gap junctions were downregulated with octanol showed that coupled gap junctions are required for endocytic activity. RT-PCR analysis showed that the expression of connexin 43 (Cx43) was first evident at stage II of oogenesis and increased during the subsequent vitellogenic stages (III, IV and V), which would indicate that this Cx is related to the process that regulates yolk uptake. No expression changes were detected for Cx31 and Cx38 during vitellogenesis. Based on our results, we propose that direct gap junctional communication is a requirement for endocytic activity, as without the appropriate signal from surrounding epithelial cells X. laevis oocytes were unable to endocytose VTG.  相似文献   

11.
Developing ovarian follicles of Bacillus rossius have been examined ultrastructurally in an attempt to understand how inception of vitel-logenesis is controlled. Early vitellogenic follicles are characterized by a thick cuboidal epithelium that is highly interlocked with the oocyte plasma membrane. Gap junctional contacts are present both at the follicle cell/oocyte interface and in between adjacent follicle cells. In addition, microvilli of follicle cells protrude deeply into the cortical ooplasm of these early vitellogenic oocytes. With the onset of vitellogenesis, wide intercellular spaces appear in the follicle cell epithelium and at the follicle cell/oocyte interface. Gap junctions become progressively reduced both on the follicle cell surface and on the oocyte plasma membrane. Microvilli from the two cell types no longer interlock. From a theoretical standpoint each of the two structural differentiations present at the follicle cell/oocyte interface—gap junctions and follicle cell microvilli—could potentially trigger inception of vitellogenesis. Gap junctions might permit the passage of a regulatory molecule, transferring from follicle cells to oocyte, which would control the assembly of coated pits on the oocyte plasma membrane. Alternatively cell interaction via microvilli might induce the appearance of coated pits, thus creating a membrane focus for vitellogenin receptors. Both possibilities are discussed in relation to current literature.  相似文献   

12.
Gap junctions of some vertebrates are capable of passing the elongate molecule, calmodulin, with a molecular weight 8-17 times greater than the previously recognized size limits. Fluorescently labeled calmodulin (FCaM) (17.34 kDa) microinjected into oocytes of ovarian follicles from an amphibian, Xenopus laevis, and from two species of teleost fish, Danio rerio (Zebrafish) and Oryzias latipes (Medaka), is shown to transit their gap junctions and enter the surrounding epithelial cells. Passage of FCaM was terminated when follicles were first treated with 1 mM octanol, a molecule known to down-regulate gap junctions. There was no FCaM detected in the surrounding medium, nor did epithelial cells become fluorescent when follicles were incubated in medium containing dye. Calmodulin is well known to modulate many cytoplasmic reactions; thus, its passage through gap junctions opens possibilities of additional means by which cells may be supplied with this signaling molecule, and by which their supply may be regulated.  相似文献   

13.
The membrane-potential changes of pig oocytes during maturation are described. Cumulus-enclosed oocytes have a resting potential of -41.81 +/- 0.60 mV; the removal of cumulus cells caused this potential to drop to -30.95 +/- 0.43 mV. Adding LH to the culture medium did not influence the potential of denuded oocytes but depolarized the potential of cumulus-enclosed oocytes to -32.90 +/- 0.43 mV. FSH did not affect the membrane potential of denuded or cumulus-enclosed oocytes, but significantly reduced the amplitude of the depolarization induced by LH. The effect of gonadotropins on cultured granulosa cells was also investigated. Plated granulosa cells have a resting potential of -45.21 +/- 0.72 mV, similar to that of cumulus-enclosed oocytes. As recorded in cumulus-enclosed oocytes, LH depolarized granulosa cell membrane potential (-30.33 +/- 0.69 mV) and FSH reduced this effect. To evaluate if oocyte maturation in vivo is accompanied by membrane-potential depolarization, follicular growth and oocyte maturation were induced in 6 prepubertal gilts by using an eCG-hCG treatment. Twenty hours after the beginning of oocyte maturation in vivo (induced by hCG), the membrane potential of the oocyte was depolarized to -28.84 +/- 1.01 mV, a value similar to that observed in vitro. These data indicate that both LH and FSH can influence the membrane potential of follicular somatic cells and, consequently, that of the oocyte. The electrical coupling between somatic cell and oocyte may represent a means by which the gonadotropin message is passed to the germinal cell by the somatic compartment.  相似文献   

14.
One of the currently popular hypotheses for the regulation of meiotic resumption in mammalian oocytes proposes that the preovulatory surge of luteinizing hormone causes down-regulation of follicular gap junctions, which in turn disrupts transfer of a meiotic arrester from the somatic cells into the oocyte. The present study has investigated this hypothesis by examining the integrity of membrana granulosa cell gap junctions during the period of irreversible commitment to maturation of golden Syrian hamster oocytes in vivo. Our results have revealed a significant progressive decrease in the fractional area of cell surface occupied by gap junction membrane with increasing percentage of oocytes irreversibly committed to mature (1.946% and 0.921% fractional gap junction area at 0% and 100% oocytes irreversibly committed to mature, respectively, P less than 0.05). This net loss of membrana granulosa cell gap junctions from the cell surface was accompanied by a significant decrease in density of gap junction particles, whether they were arranged in rectilinear or non-rectilinear packing patterns. Furthermore, the number of gap junction particles per unit area of surface membrane scanned also underwent a significant progressive decrease with increasing percentage of oocytes irreversibly committed to mature. These data with the hamster are consistent with the hypothesis that down-regulation of membrana granulosa cell gap junctions may be of central importance in the regulation of gonadotropic stimulation of meiotic resumption in mammalian oocytes.  相似文献   

15.
Cell-to-cell communication was characterized in cumulus-oocyte complexes from rat ovarian follicles before and after ovulation. Numerous, small gap junctional contacts were present between cumulus cells and oocytes before ovulation. The gap junction are formed on the oocyte surface by cumulus cell processes that transverse the zona pellucida and contact the oolemma. The entire cumulus mass was also connected by gap junctions via cumulus-cumulus interactions. In the hours preceding ovulation, the frequency of gap junctional contacts between cumulus cells and the oocyte was reduced, and the cumulus was disorganized. Electrophysiological measurements indicated that bidirectional ionic coupling was present between the cumulus and oocyte before ovulation. In addition, iontophoretically injected fluorescein dye was tranferred between the oocyte and cumulus cells. Examination of the extent of ionic coupling in cumulus-oocyte specimens before and after ovulation revealed that ionic coupling between the cumulus and oocyte progressively decreased as the time of ovulation approached. In postovulatory specimens, no coupling was detected. Although some proteolytic mechanism may be involved in the disintegration of the cumulus-oocyte complex, neither the cumulus cells nor the oocyte produced detectable levels of plasminogen activator, a protease which is synthesized by membrana granulosa cells. In summary, cell communication is a characterisitc feature of the cumulus-oocyte complex, and this communication is terminated near the time of ovulation. This temporal pattern of the termination of communication between the cumulus and the oocyte may indicate that communication provides a mechanism for regulating the maturation of the oocyte during follicular development before ovulation.  相似文献   

16.
Yu N  Roy SK 《Biology of reproduction》1999,61(6):1558-1567
Fetal hamster ovaries were cultured for up to 16 days in the presence or absence of various dosages of insulin to evaluate the induction of folliculogenesis in vitro. In the absence of insulin, a few primordial follicle-like structures appeared by the 4th day, and distinct primary follicles (stage 1) appeared by the 12th day of culture. The organelles in the oocytes and adjacent granulosa cells developed along with follicular growth. Moreover, gap junctions between the oocyte and somatic cell plasma membrane also developed as early as 8 days in culture. In the presence of 0.2 microg/ml insulin, primary follicles developed after 8 days, and approximately 4% secondary follicles with 2-3 layers of granulosa cells appeared after 16 days of culture. However, higher dosages (> 0.2 microg/ml) of insulin retarded primary follicle formation and induced the formation of primordial follicles with larger oocytes. An increased number of larger oocytes with a few granulosa cells accumulated at the periphery of the ovary. The results indicate that although primordial and primary follicles can develop after 12 days in vitro in the absence of exogenous insulin, the latter is required for timely progression of follicular development through primary and secondary stages.  相似文献   

17.
A study was conducted to develop an in vitro culture system for growing sheep oocytes from isolated primordial follicles. Enzymatically isolated neonatal sheep primordial follicles were cultured in Waymouth MB752/1 medium containing BSA (3 mg/ml) + ITS (1%, v/v) over 28 days. In Experiment 1, primordial follicles (average diameter 40.2+/-0.60 microm) were cultured at densities of 20, 50 and 100 follicles per well. Less than 20% of the oocytes survived to day 28 but there was a significant (P < 0.05) increase in median oocyte diameter from day 2 to day 28 for oocytes cultured at the higher densities of 50 and 100 follicles. In Experiment 2, two methods to improve oocyte:granulosa cell associations were tested. Altering the fibronectin coating regime did not improve oocyte survival and growth. In contrast lectin-aggregated primordial follicles cultured on non-coated wells showed significantly (P < 0.05) improved oocyte survival to 50% and increased median oocyte diameter compared to non-aggregated follicles. In Experiment 3, the effect of KIT ligand (KL) at 0 ng/ml, 10 ng/ml and 100 ng/ml, on lectin-aggregated primordial follicles cultured on non-coated wells was tested. KL at 100 ng/ml significantly (P < 0.05) increased median oocyte diameter compared to non-treated controls but had no effect on oocyte survival. In addition, follicles cultured with 100 ng/ml KL expressed mRNA for AMH, a gene expressed only in granulosa cells of growing follicles. In conclusion, culture of lectin-aggregated primordial follicles supported the long-term survival and growth of oocytes from isolated sheep primordial follicles. Culture of lectin-aggregates with 100 ng/ml KL further increased oocyte growth and induced granulosa cell differentiation.  相似文献   

18.
Oocytes grow within ovarian follicles in which the oocyte is coupled to the surrounding granulosa cells by gap junctions. It was previously found that small growing oocytes isolated from juvenile mice and freed of their surrounding granulosa cells (denuded) lacked the ability to regulate their intracellular pH (pH(i)), did not exhibit the pH(i)-regulatory HCO(3)(-)/Cl(-) and Na(+)/H(+) exchange activities found in fully-grown oocytes, and had low pH(i). However, both exchangers became active as oocytes grew near to full size, and, simultaneously, oocyte pH(i) increased by approximately 0.25 pH units. Here, we show that, in the more physiological setting of the intact follicle, oocyte pH(i) is instead maintained at approximately 7.2 throughout oocyte development, and the growing oocyte exhibits HCO(3)(-)/Cl(-) exchange, which it lacks when denuded. This activity in the oocyte requires functional gap junctions, as gap junction inhibitors eliminated HCO(3)(-)/Cl(-) exchange activity from follicle-enclosed growing oocytes and substantially impeded the recovery of the oocyte from an induced alkalosis, implying that oocyte pH(i) may be regulated by pH-regulatory exchangers in granulosa cells via gap junctions. This would require robust HCO(3)(-)/Cl(-) exchange activity in the granulosa cells, which was confirmed using oocytectomized (OOX) cumulus-oocyte complexes. Moreover, in cumulus-oocyte complexes with granulosa cells coupled to fully-grown oocytes, HCO(3)(-)/Cl(-) exchange activity was identical in both compartments and faster than in denuded oocytes. Taken together, these results indicate that growing oocyte pH(i) is controlled by pH-regulatory mechanisms residing in the granulosa cells until the oocyte reaches a developmental stage where it becomes capable of carrying out its own homeostasis.  相似文献   

19.
20.
The steady-state potential of the oocyte, resistance between the ooplasm and the medium, and electronic coupling between oocytes in adjacent follicles were examined in vitellogenic ovarioles of Hyalophora cecropia. The steady-state potential had a constant value of ?40 mV throughout the 100-fold volume increase accompanying yolk deposition, while membrane resistance decreased gradually with increasing size. Resistance rose steeply with the onset of chorion deposition, but did not detectably change with either nurse cell collapse or termination of vitellogenesis. Nonrectified electrical coupling was found between oocytes in adjacent follicles, and fluorescein ions injected into the ooplasm moved readily from follicle to follicle. Large surface area and low membrane resistance made coupling difficult to detect electrically between more mature oocytes, but interfollicular fluorescein migration was found to persist until the end of vitellogenesis. Migration of fluorescein from the oocyte to the follicular epithelium could also be visualized and fingers of ooplasm that cross the vitelline envelope and terminate in dome-shaped attachments to the epithelial cells were implicated in this transfer. The termination of interfollicular coupling coincided with the termination of epithelial-oocyte coupling, and is proposed to result from thickening of the vitelline envelope and withdrawal of the ooplasmic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号