首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While mitochondrial dysfunction is a pathological process that occurs after acute kidney injury (AKI), the state of mitochondrial homeostasis during the injury and recovery phases of AKI remains unclear. We examined markers of mitochondrial homeostasis in two nonlethal rodent AKI models. Myoglobinuric AKI was induced by glycerol injection into rats, and mice were subjected to ischemic AKI. Animals in both models had elevated serum creatinine, indicative of renal dysfunction, 24 h after injury which partially recovered over 144 h postinjury. Markers of proximal tubule function/injury, including neutrophil gelatinase-associated lipocalin and urine glucose, did not recover during this same period. The persistent pathological state was confirmed by sustained caspase 3 cleavage and evidence of tubule dilation and brush-border damage. Respiratory proteins NDUFB8, ATP synthase β, cytochrome c oxidase subunit I (COX I), and COX IV were decreased in both injury models and did not recover by 144 h. Immunohistochemical analysis confirmed that COX IV protein was progressively lost in proximal tubules of the kidney cortex after ischemia-reperfusion (I/R). Expression of mitochondrial fission protein Drp1 was elevated after injury in both models, whereas the fusion protein Mfn2 was elevated after glycerol injury but decreased after I/R AKI. LC3-I/II expression revealed that autophagy increased in both injury models at the later time points. Markers of mitochondrial biogenesis, such as PGC-1α and PRC, were elevated in both models. These findings reveal that there is persistent disruption of mitochondrial homeostasis and sustained tubular damage after AKI, even in the presence of mitochondrial recovery signals and improved glomerular filtration.  相似文献   

2.
Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal γδ T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal–epithelial interactions in skin homeostasis and disease.  相似文献   

3.
The expression of multiple connexin (Cx) types in the epidermis, their differential expression during wound closure and the association of skin pathology with specific Cx gene mutations, are indicative of important functions for Cxs in the skin. In this review, we focus on the role of Cx proteins in the epidermis and during wound healing and discuss mutations in Cx genes which cause skin disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

4.
In isolating and culturing in vitro populations of basal cells from adult guinea pig skin, it has been possible to show that these cells are sensitive to both G1 and G2 inhibitions. Only a small fraction (10 percent or less) of the G1 blocked cell population would be governed by G1 inhibitory messages released by suprabasal, maturing keratinocytes. As regards the G2 block in vitro experiments confirm that basal cells produce a G2 blocker to which about 9 per cent or less are susceptible. In conclusion basal cells in culture are sensitive to homeostatic regulation as in vivo.  相似文献   

5.
Non-neuronal nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in skin and their function remains to be elucidated. Herein, we report that cutaneous alpha7 nAChR plays a role in the physiological control of cutaneous homeostasis. We studied in vitro effects of functional inactivation of alpha7 receptor on the expression of apoptosis regulators in keratinocytes (KC) lacking alpha7 nAChR, and extracellular matrix regulators in the skin of alpha7 knockout (KO) mice. Elimination of the alpha7 component of nicotinergic signaling in KC decreased relative amounts of the pro-apoptotic Bad and Bax at both the mRNA and the protein levels, suggesting that alpha7 nAChR is coupled to stimulation of keratinocyte apoptosis. The skin of alpha7 KO mice featured decreased amounts of the extracellular matrix proteins collagen 1alpha1 and elastin as well as the metalloproteinase-1. Taken together, these results suggest an important role for alpha7 nAChR in mediating plethoric effects of non-neuronal acetylcholine on cutaneous homeostasis.  相似文献   

6.
7.
8.
The world is experiencing an epidemic of obesity and its concomitant health problems. One implication is that the normally robust negative feedback system that controls energy homeostasis must be responding to different inputs than in the past. In this review we discuss the influence of gender on the efficacy of adiposity hormones as they interact with food intake control systems in the brain. Specifically, the levels of insulin and leptin in the blood are correlated with body fat, insulin being related mainly to visceral fat and leptin to subcutaneous fat. Since females carry more fat subcutaneously and males carry more fat viscerally, leptin correlates better with total body fat in females and insulin correlates better in males. High visceral fat and plasma insulin are also risk factors for the complications of obesity, including type-2 diabetes, cardiovascular problems, and certain cancers, and these are more prevalent in males. Consistent with these systemic differences, the brains of females are more sensitive to the catabolic actions of low doses of leptin whereas the brains of males are more sensitive to the catabolic action of low doses of insulin. The implications of this are discussed.  相似文献   

9.
10.
11.
Endocannabinoids (ECBs) are ubiquitous lipid mediators that act through the same G protein-coupled receptors (CB1 and CB2) that recognize plant-derived cannabinoids. As regulators of metabolism, ECBs are anabolic: they increase the intake, promote the storage, and decrease the expenditure of energy. Recent work indicates that activation of peripheral CB1 receptors by ECBs plays a key role in the hormonal/metabolic changes associated with obesity/metabolic syndrome and may be targeted for its pharmacotherapy.  相似文献   

12.
13.
14.
Biomechanics and Modeling in Mechanobiology - Mature arteries exhibit a preferred biomechanical state in health evidenced by a narrow range of intramural and wall shear stresses. When stresses are...  相似文献   

15.
Neuronal control of energy homeostasis   总被引:1,自引:0,他引:1  
Gao Q  Horvath TL 《FEBS letters》2008,582(1):132-141
Neuronal control of body energy homeostasis is the key mechanism by which animals and humans regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic feeding systems) control energy intake and expenditure to maintain body weight within a narrow range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients target these structures providing feedback signals that modify the default "settings" of neuronal activity to accomplish this balance. A number of molecular genetic tools for manipulating individual components of brain energy homeostatic machineries, in combination with anatomical, electrophysiological, pharmacological and behavioral techniques, have been developed, which provide a means for elucidating the complex molecular and cellular mechanisms of feeding behavior and metabolism. This review will highlight some of these advancements and focus on the neuronal circuitries of energy homeostasis.  相似文献   

16.
17.
18.
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.  相似文献   

19.
The novel Ca2+-binding protein, Scarf (skin calmodulin-related factor) belongs to the calmodulin-like protein family and is expressed in the differentiated layers of the epidermis. To determine the roles of Scarf during stratification, we set out to identify the binding target proteins by affinity chromatography and subsequent analysis by mass spectrometry. Several binding factors, including 14-3-3s, annexins, calreticulin, ERp72 (endoplasmic reticulum protein 72), and nucleolin, were identified, and their interactions with Scarf were corroborated by co-immunoprecipitation and co-localization analyses. To further understand the functions of Scarf in epidermis in vivo, we altered the epidermal Ca2+ gradient by acute barrier disruption. The change in the expression levels of Scarf and its binding target proteins were determined by immunohistochemistry and Western blot analysis. The expression of Scarf, annexins, calreticulin, and ERp72 were up-regulated by Ca2+ gradient disruption, whereas the expression of 14-3-3s and nucleolin was reduced. Because annexins, calreticulin, and ERp72 have been implicated in Ca2+-induced cellular trafficking, including the secretion of lamellar bodies and Ca2+ homeostasis, we propose that the interaction of Scarf with these proteins might be crucial in the process of barrier restoration. On the other hand, down-regulation of 14-3-3s and nucleolin is potentially involved in the process of keratinocyte differentiation and growth inhibition. The calcium-dependent localization and up-regulation of Scarf and its binding target proteins were studied in mouse keratinocytes treated with ionomycin and during the wound-healing process. We found increased expression and nuclear presence of Scarf in the epidermis of the wound edge 4 and 7 days post-wounding, entailing the role of Scarf in barrier restoration. Our results suggest that Scarf plays a critical role as a Ca2+ sensor, potentially regulating the function of its binding target proteins in a Ca2+-dependent manner in the process of restoration of epidermal Ca2+ gradient as well as during epidermal barrier formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号