首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudouridines in the stable RNAs of Bacteria are seldom subjected to further modification. There are 11 pseudouridine (Ψ) sites in Escherichia coli rRNA, and further modification is found only at Ψ1915 in 23S rRNA, where the N-3 position of the base becomes methylated. Here, we report the identity of the E. coli methyltransferase that specifically catalyzes methyl group addition to form m3Ψ1915. Analyses of E. coli rRNAs using MALDI mass spectrometry showed that inactivation of the ybeA gene leads to loss of methylation at nucleotide Ψ1915. Methylation is restored by complementing the knockout strain with a plasmid-encoded copy of ybeA. Homologs of the ybeA gene, and thus presumably the ensuing methylation at nucleotide m3Ψ1915, are present in most bacterial lineages but are essentially absent in the Archaea and Eukaryota. Loss of ybeA function in E. coli causes a slight slowing of the growth rate. Phylogenetically, ybeA and its homologs are grouped with other putative S-adenosylmethionine-dependent, SPOUT methyltransferase genes in the Cluster of Orthologous Genes COG1576; ybeA is the first member to be functionally characterized. The YbeA methyltransferase is active as a homodimer and docks comfortably into the ribosomal A site without encroaching into the P site. YbeA makes extensive interface contacts with both the 30S and 50S subunits to align its active site cofactor adjacent to nucleotide Ψ1915. Methylation by YbeA (redesignated RlmH for rRNA large subunit methyltransferase H) possibly functions as a stamp of approval signifying that the 50S subunit has engaged in translational initiation.  相似文献   

2.
Along the ribosome assembly pathway, various ribosomal RNA processing and modification reactions take place. Stem–loop 69 in the large subunit of Escherichia coli ribosomes plays a substantial role in ribosome functioning. It contains three highly conserved pseudouridines synthesized by pseudouridine synthase RluD. One of the pseudouridines is further methylated by RlmH. In this paper we show that RlmH has unique substrate specificity among rRNA modification enzymes. It preferentially methylates pseudouridine and less efficiently uridine. Furthermore, RlmH is the only known modification enzyme that is specific to 70S ribosomes. Kinetic parameters determined for RlmH are the following: The apparent KM for substrate 70S ribosomes is 0.51 ± 0.06 μM, and for cofactor S-adenosyl-L-methionine 27 ± 3 μM; the kcat values are 4.95 ± 1.10 min−1 and 6.4 ± 1.3 min−1, respectively. Knowledge of the substrate specificity and the kinetic parameters of RlmH made it possible to determine the kinetic parameters for RluD as well. The KM value for substrate 50S subunits is 0.98 ± 0.18 μM and the kcat value is 1.97 ± 0.46 min−1. RluD is the first rRNA pseudouridine synthase to be kinetically characterized. The determined rates of RluD- and RlmH-directed modifications of 23S rRNA are compatible with the rate of 50S assembly in vivo. The fact that RlmH requires 30S subunits demonstrates the dependence of 50S subunit maturation on the simultaneous presence of 30S subunits.  相似文献   

3.
The gene orfX is conserved among all staphylococci, and its complete sequence is maintained upon insertion of the staphylococcal chromosome cassette mec (SCCmec) genomic island, containing the gene encoding resistance to β-lactam antibiotics (mecA), into its C terminus. The function of OrfX has not been determined. We show that OrfX was constitutively produced during growth, that orfX could be inactivated without altering bacterial growth, and that insertion of SCCmec did not alter gene expression. We solved the crystal structure of OrfX at 1.7 Å and found that it belongs to the S-adenosyl-l-methionine (AdoMet)-dependent α/β-knot superfamily of SPOUT methyltransferases (MTases), with a high structural homology to YbeA, the gene product of the Escherichia coli 70 S ribosomal MTase RlmH. MTase activity was confirmed by demonstrating the OrfX-dependent methylation of the Staphylococcus aureus 70 S ribosome. When OrfX was crystallized in the presence of its AdoMet substrate, we found that each monomer of the homodimeric structure bound AdoMet in its active site. Solution studies using isothermal titration calorimetry confirmed that each monomer bound AdoMet but with different binding affinities (Kd = 52 ± 0.4 and 606 ± 2 μm). In addition, the structure shows that the AdoMet-binding pocket, formed by a deep trefoil knot, contains a bound phosphate molecule, which is the likely nucleotide methylation site. This study represents the first characterization of a staphylococcal ribosomal MTase and provides the first crystal structure of a member of the α/β-knot superfamily of SPOUT MTases in the RlmH or COG1576 family with bound AdoMet.  相似文献   

4.
Methylation at the 5-position of cytosine [m5C (5-methylcytidine)] occurs at three RNA nucleotides in Escherichia coli. All these modifications are at highly conserved nucleotides in the rRNAs, and each is catalyzed by its own m5C methyltransferase enzyme. Two of the enzymes, RsmB and RsmF, are already known and methylate 16S rRNA at nucleotides C967 and C1407, respectively. Here, we report the identity of the third E. coli m5C methyltransferase. Analysis of rRNAs by matrix-assisted laser desorption/ionization mass spectrometry showed that inactivation of the yccW gene leads to loss of m5C methylation at nucleotide 1962 in E. coli 23S rRNA. This methylation is restored by complementing the knockout strain with a plasmid-encoded copy of the yccW gene. Purified recombinant YccW protein retains its specificity for C1962 in vitro and methylates naked 23S rRNA isolated from the yccW knockout strain. However, YccW does not methylate assembled 50S subunits, and this is somewhat surprising as the published crystal structures show nucleotide C1962 to be fully accessible at the subunit interface. YccW-directed methylation at nucleotide C1962 is conserved in bacteria, and loss of this methylation in E. coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m5C methyltransferases RsmB and RsmF and is in fact more similar to known m5U (5-methyluridine) RNA methyltransferases. In keeping with the previously proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI.  相似文献   

5.
Methylation of the bacterial small ribosomal subunit (16S) rRNA on the N1 position of A1408 confers exceptionally high-level resistance to a broad spectrum of aminoglycoside antibiotics. Here, we present a detailed structural and functional analysis of the Catenulisporales acidiphilia 16S rRNA (m1A1408) methyltransferase (‘CacKam’). The apo CacKam structure closely resembles other m1A1408 methyltransferases within its conserved SAM-binding fold but the region linking core β strands 6 and 7 (the ‘β6/7 linker’) has a unique, extended structure that partially occludes the putative 16S rRNA binding surface, and sequesters the conserved and functionally critical W203 outside of the CacKam active site. Substitution of conserved residues in the SAM binding pocket reveals a functional dichotomy in the 16S rRNA (m1A1408) methyltransferase family, with two apparently distinct molecular mechanisms coupling cosubstrate/ substrate binding to catalytic activity. Our results additionally suggest that CacKam exploits the W203-mediated remodeling of the β6/7 linker as a novel mechanism to control 30S substrate recognition and enzymatic turnover.  相似文献   

6.
Erythromycin-resistance methyltransferases are SAM dependent Rossmann fold methyltransferases that convert A2058 of 23S rRNA to m6 2A2058. This modification sterically blocks binding of several classes of antibiotics to 23S rRNA, resulting in a multidrug-resistant phenotype in bacteria expressing the enzyme. ErmC is an erythromycin resistance methyltransferase found in many Gram-positive pathogens, whereas ErmE is found in the soil bacterium that biosynthesizes erythromycin. Whether ErmC and ErmE, which possess only 24% sequence identity, use similar structural elements for rRNA substrate recognition and positioning is not known. To investigate this question, we used structural data from related proteins to guide site-saturation mutagenesis of key residues and characterized selected variants by antibiotic susceptibility testing, single turnover kinetics, and RNA affinity–binding assays. We demonstrate that residues in α4, α5, and the α5-α6 linker are essential for methyltransferase function, including an aromatic residue on α4 that likely forms stacking interactions with the substrate adenosine and basic residues in α5 and the α5-α6 linker that likely mediate conformational rearrangements in the protein and cognate rRNA upon interaction. The functional studies led us to a new structural model for the ErmC or ErmE-rRNA complex.  相似文献   

7.
8.
We have shown that Rpl3, a protein of the large ribosomal subunit from baker''s yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-3H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven β-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.  相似文献   

9.
Leppik M  Ero R  Liiv A  Kipper K  Remme J 《Biochimie》2012,94(5):1080-1089
Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.  相似文献   

10.
A locus (kmr) responsible for aminoglycosides-resistance of Sorangium cellulosum was cloned and characterized in Myxococcus xanthus. The gene kmr encodes a putative rRNA methyltransferase. Expression of the complete ORF endowed the Myxococcus transformants with the resistance to aminoglycosidic antibiotics of kanamycin, apramycin, gentamycin, neomycin, and tobramycin at an extraordinary high-level (MIC, higher than 500 μg/ml). However, the gene did not function in Escherichia coli cells. In Sorangium genome, the gene kmr was followed by a putative integrase gene, and was highly homologous in different Sorangium strains. The Sorangium rRNA methyltransferase sequence was in low similarity to the reported 16S rRNA methyltransferases, and their resistance spectrums were also different. The results indicate that the rRNA methyltransferase (Kmr) in Sorangium strains is a new member of the rRNA methyltransferases family.  相似文献   

11.
Sgm (Sisomicin-gentamicin methyltransferase) from antibiotic-producing bacterium Micromonospora zionensis is an enzyme that confers resistance to aminoglycosides like gentamicin and sisomicin by specifically methylating G1405 in bacterial 16S rRNA. Sgm belongs to the aminoglycoside resistance methyltransferase (Arm) family of enzymes that have been recently found to spread by horizontal gene transfer among disease-causing bacteria. Structural characterization of Arm enzymes is the key to understand their mechanism of action and to develop inhibitors that would block their activity. Here we report the structure of Sgm in complex with cofactors S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.0 and 2.1 Å resolution, respectively, and results of mutagenesis and rRNA footprinting, and protein-substrate docking. We propose the mechanism of methylation of G1405 by Sgm and compare it with other m7G methyltransferases, revealing a surprising diversity of active sites and binding modes for the same basic reaction of RNA modification. This analysis can serve as a stepping stone towards developing drugs that would specifically block the activity of Arm methyltransferases and thereby re-sensitize pathogenic bacteria to aminoglycoside antibiotics.  相似文献   

12.
13.
Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally crowded stretch of the rRNA sequence. Here, we show that the Sgm methyltransferase confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides by introducing the 16S rRNA modification m7G1405 within the ribosomal A site. This region of Escherichia coli 16S rRNA already contains several methylated nucleotides including m4Cm1402 and m5C1407. Modification at m5C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance, is less able to interfere with RsmF methylation on the 30S subunit. The two methylations at 16S rRNA nucleotide m4Cm1402 are unaffected by both the wild-type and the mutant versions of Sgm. The data indicate that interplay between resistance methyltransferases and the cell''s own indigenous methyltransferases can play an important role in determining resistance levels.  相似文献   

14.
RlmAII methylates the N1-position of nucleotide G748 in hairpin 35 of 23 S rRNA. The resultant methyl group extends into the peptide channel of the 50 S ribosomal subunit and confers resistance to tylosin and other mycinosylated macrolide antibiotics. Methylation at G748 occurs in several groups of Gram-positive bacteria, including the tylosin-producer Streptomyces fradiae and the pathogen Streptococcus pneumoniae. Recombinant S. pneumoniae RlmAII was purified and shown to retain its activity and specificity in vitro when tested on unmethylated 23 S rRNA substrates. RlmAII makes multiple footprint contacts with nucleotides in stem-loops 33, 34 and 35, and does not interact elsewhere in the rRNA. Binding of RlmAII to the rRNA is dependent on the cofactor S-adenosylmethionine (or S-adenosylhomocysteine). RlmAII interacts with the same rRNA region as the orthologous enzyme RlmAI that methylates at nucleotide G745. Differences in nucleotide contacts within hairpin 35 indicate how the two methyltransferases recognize their distinct targets.  相似文献   

15.
In the protist Euglena gracilis, the cytosolic small subunit (SSU) rRNA is a single, covalently continuous species typical of most eukaryotes; in contrast, the large subunit (LSU) rRNA is naturally fragmented, comprising 14 separate RNA molecules instead of the bipartite (28S + 5.8S) eukaryotic LSU rRNA typically seen. We present extensively revised secondary structure models of the E. gracilis SSU and LSU rRNAs and have mapped the positions of all of the modified nucleosides in these rRNAs (88 in SSU rRNA and 262 in LSU rRNA, with only 3 LSU rRNA modifications incompletely characterized). The relative proportions of ribose-methylated nucleosides and pseudouridine (∼ 60% and ∼ 35%, respectively) are closely similar in the two rRNAs; however, whereas the Euglena SSU rRNA has about the same absolute number of modifications as its human counterpart, the Euglena LSU rRNA has twice as many modifications as the corresponding human LSU rRNA. The increased levels of rRNA fragmentation and modification in E. gracilis LSU rRNA are correlated with a 3-fold increase in the level of mispairing in helical regions compared to the human LSU rRNA. In contrast, no comparable increase in mispairing is seen in helical regions of the SSU rRNA compared to its homologs in other eukaryotes. In view of the reported effects of both ribose-methylated nucleoside and pseudouridine residues on RNA structure, these correlations lead us to suggest that increased modification in the LSU rRNA may play a role in stabilizing a ‘looser’ structure promoted by elevated helical mispairing and a high degree of fragmentation.  相似文献   

16.
Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the modifying enzymes have been identified, although a few notable exceptions include the 2′-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNALeuCmAA and tRNALeucmnm5UmAA. Here, we have used a comparative genomics approach to uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2′-O-methylation at position 34 in both tRNALeuCmAA and tRNALeucmnm5UmAA. Loss of YibK methylation reduces the efficiency of codon–wobble base interaction, as demonstrated in an amber suppressor supP system. Inactivation of yibK had no detectable effect on steady-state growth rate, although a distinct disadvantage was noted in multiple-round, mixed-population growth experiments, suggesting that the ability to recover from the stationary phase was impaired. Methylation is restored in vivo by complementing with a recombinant copy of yibK. Despite being one of the smallest characterized α/β knot proteins, YibK independently catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2′-OH of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N6-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL.  相似文献   

17.
Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2′-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams–Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3′-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3′ ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3′-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N7-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.  相似文献   

18.
19.
X-ray crystal structures were determined of the broad-spectrum aminoglycoside-resistance A1408 16S rRNA methyltransferases KamB and NpmA, from the aminoglycoside-producer Streptoalloteichus tenebrarius and human pathogenic Escherichia coli, respectively. Consistent with their common function, both are Class I methyltransferases with additional highly conserved structural motifs that embellish the core SAM-binding fold. In overall structure, the A1408 rRNA methyltransferase were found to be most similar to a second family of Class I methyltransferases of distinct substrate specificity (m7G46 tRNA). Critical residues for A1408 rRNA methyltransferase activity were experimentally defined using protein mutagenesis and bacterial growth assays with kanamycin. Essential residues for SAM coenzyme binding and an extended protein surface that likely interacts with the 30S ribosomal subunit were thus revealed. The structures also suggest potential mechanisms of A1408 target nucleotide selection and positioning. We propose that a dynamic extended loop structure that is positioned adjacent to both the bound SAM and a functionally critical structural motif may mediate concerted conformational changes in rRNA and protein that underpin the specificity of target selection and activation of methyltransferase activity. These new structures provide important new insights that may provide a starting point for strategies to inhibit these emerging causes of pathogenic bacterial resistance to aminoglycosides.  相似文献   

20.
The synthesis of a 5′-O-BzH–2′-O-ACE-protected pseudouridine phosphoramidite is reported [BzH, benzhydryloxy-bis(trimethylsilyloxy)silyl; ACE, bis(2-acetoxyethoxy)methyl]. The availability of the phosphoramidite allows for reliable and efficient syntheses of hairpin RNAs containing single or multiple pseudouridine modifications in the stem or loop regions. Five 19-nt hairpin RNAs representing the 1920-loop region (G1906–C1924) of Escherichia coli 23S rRNA were synthesized with pseudouridine residues located at positions 1911, 1915 and 1917. Thermodynamic parameters, circular dichroism spectra and NMR data are presented for all five RNAs. Overall, three different structural contexts for the pseudouridine residues were examined and compared with the unmodified RNA. Our main findings are that pseudouridine modifications exhibit a range of effects on RNA stability and structure, depending on their locations. More specifically, pseudouridines in the single-stranded loop regions of the model RNAs are slightly destabilizing, whereas a pseudouridine at the stem–loop junction is stabilizing. Furthermore, the observed effects on stability are approximately additive when multiple pseudouridine residues are present. The possible relationship of these results to RNA function is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号