首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potassium channel antagonist 4-aminopyridine (4-AP) improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP''s ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel), 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR) and vision-enhanced vestibulo-ocular reflex (VVOR), and the optokinetic reflex (OKR) about yaw and roll axes. Because tottering''s deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants'' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further studies to elucidate the drug''s mechanism of action on cerebellar motor dysfunction.  相似文献   

2.
We compared the changes in monoamines and their metabolites in the El mouse brain induced by GABA-A and GABA-B receptor agonists. Muscimol was used as a GABA-A receptor agonist, and baclofen as a GABA-B receptor agonist. Muscimol (3 mg/kg) significantly increased the DOPAC level in all parts of the mouse brain and the HVA level in the cortex, striatum, and midbrain. No significant change was observed in the dopamine (DA) level. These findings suggest that muscimol may accelerate both the synthesis and catabolism of DA. Baclofen (20 mg/kg) increased the DA level in the hippocampus and midbrain, and the DOPAC level in the hippocampus. Muscimol increased 5-HIAA levels and decreased 5-HT levels. This result suggests that 5-HT metabolism is accelerated by muscimol. No change in 5-HT or 5-HIAA levels was induced by baclofen. The GABA-A receptor system seems to have a potent effect not only on DA neurons, but on 5-HT neurons. However, the GABA-B receptor system appears to have almost no effect on 5-HT neurons, though it appears to have some effect on DA neurons.  相似文献   

3.
Electric stimulation of the rat forepaw evokes a negative potential (N-wave) at the ipsilateral cuneate nucleus. The responses of the N-wave to microiontophoretically applied GABA agonists and antagonists have been studied. Applications of GABA-A agonists (3-amino-propanesulfonic acid and muscimol) reduce the amplitude of the N-wave. This effect decreases during prolonged application, suggesting a desensitization of GABA-A receptors. In addition the effect of muscimol is reduced by (-)-bicuculline methiodide. Baclofen (a GABA-B agonist) also depresses the N-wave but its action lasts longer, is less reversible, shows no desensitization and is not blocked by (-)-bicuculline methiodide. The different responses of the N-wave to GABA-A and GABA-B agonists are compatible with the existence of different types of functional receptors for them in the cuneate nucleus of the rat. The receptors activated by muscimol (GABA-A) are clearly not the same as the ones activated by baclofen (conceivably GABA-B).  相似文献   

4.
The early component of the postural responses which accompany the limb flexion during unilateral stimulation of the motor cortex in the cat is not of reflex origin, but results from a central command. These postural adjustments are characterized by a decreased force under the limb diagonally opposite to the moving one and an increased force under the other two. Since the lateral vestibular nucleus (LVN) exerts an excitatory influence on ipsilateral limb extensor motoneurons, experiments were performed in cats to establish whether the cortical-induced postural changes were mediated through the LVN. This structure is tonically inhibited by GABAergic synapses originating from Purkinje cells of the cerebellar vermis, so that local microinjection into the LVN of GABA agonists or antagonists should either decrease or increase the spontaneous discharge of their neurons. Unilateral microinjection of 0.25 microliters of the GABA-A agonist muscimol or the GABA-B agonist baclofen (at 2-4 micrograms/microliters saline) into the LVN produced a short-lasting episode of ipsilateral postural hypotonia and contralateral hypertonia, during which the cats were unable to stand on the measurement platform. When, shortly after, some recovery of the postural activity appeared, no changes in threshold, latency or amplitude of the cortical-induced flexion movement were observed; however, the early component of the postural responses decreased in the other three limbs. Moreover, the slope of the response curve of the moving limb remained unmodified, while that of the early component of the postural responses, which involved the remaining limbs, decreased following stimulation of the motor cortex at different stimulus intensities. These effects started a few min after the injection and lasted for about 2-3 h. The effects described above were dose-dependent. Moreover, histological controls indicated that the structure responsible for these postural changes corresponded to the middle part of the LVN. The specificity of the results was shown by the fact that unilateral microinjection of 0.25 microliters of the GABA-A antagonist bicuculline or the GABA-B antagonist phaclofen (at 5-8 micrograms/microliter saline) into the LVN produced a postural asymmetry opposite in sign to that elicited in the same experiments by the corresponding agonists. These injections did not modify the amplitude of the cortical-induced limb flexion, but rather enhanced the amplitude of the early component of the postural responses in the other three limbs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Mammalian endothelial cells are deficient in cystathionine β synthetase (CBS) activity, which is responsible for homocysteine (Hcy) clearance. This deficiency makes the endothelium theprime target for Hcy toxicity. Hcy induces integrin shedding in microvascular endothelial cells (MVEC) by increasing matrix metalloproteinase (MMP). Hcy competes with inhibitory neurotransmitter γ aminobutyric acid (GABA)-A receptor. We hypothesized that Hcy transduces MVEC remodeling by increasing metalloproteinase activity and shedding β-1 integrin by inactivating the GABA-A/B receptors, thus behaving as an excitatory neurotransmitter. MVEC were isolated from mouse brain. The presence of GABA-A receptor was determined by immunolabeling. It was induced by muscimol, an agonist of GABA-A receptors as measured by Western blot analysis. Hcy induced MMP-2 activity in a dose- and time-dependent maner, measured by zymography. GABA-A/B receptors ameliorated the Hcy-mediated MMP-2 activation. Hcy selectively increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 but decreased the levels of TIMP-4. Treatment with muscimol decreased the levels of TIMP-1 and TIMP-3 and increased the levels of TIMP-4 to control. Hcy caused a robust increae in the levels of a disintegrin and metalloproteinase (ADAM)-12. In the medium of MVEC reated with Hcy, the levels of β-1 integrin were significantly increased. Treatment with muscimol or baclofen (GABA-B receptor agonist) ameliorated the levels significantly increased. Treatment with muscimol or baclofen (GABA-B receptor agonist) ameliorated the levels of β-1 integrin in the medium. These results suggested that Hcy induced DAM-12. Significantly, Hcy facilitated the β-1 integrin shedding. Treatment of MVEC with muscimole or baclofen during Hcy administration ameliorated the expression of metalloproteinase, integrin-shedding, and constrictive collagen remodeling, suggesting a role of Hcy in GABA receptor-mediated cerebrovascular remodeling.  相似文献   

6.
Baclofen and oxazepam enhance extinction of conflict behaviour in the Geller-Seifter test while baclofen and diazepam release punished behaviour in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on [3H]-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increased Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behaviour and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex.  相似文献   

7.
Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 μg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 μg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.  相似文献   

8.

Background

Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.

Methodology/Principal Findings

Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.

Conclusions

These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo.  相似文献   

9.
Retinal melatonin biosynthesis is regulated in part by changes in the activity of serotonin N-acetyltransferase (NAT), which increases at night in dark-adapted retinas, but not in light-exposed retinas. Using an in vitro preparation of Xenopus laevis (African clawed frog) eye cups, we have obtained evidence supporting the involvement of gamma-aminobutyric acid (GABA) in the regulation of NAT activity. GABA, the GABA-A receptor agonists muscimol and isoguvacine, and the GABA-B receptor agonist (−)baclofen, in the presence of 3-isobutyl-1-methylxanthine, mimicked dark adaptation by increasing the activity of NAT in light-exposed retinas. The response to GABA agonists was not additive to that observed in darkness. Diazepam increased NAT activity of light-exposed retinas when added in the presence of muscimol, but had no significant effect when added alone. Picrotoxin, an antagonist of the GABA-A receptor-linked Cl channel, blocked both the stimulation caused by dark adaptation and that caused by GABA-A agonists. The increase of NAT activity elicited by muscimol, but not that by baclofen, was blocked by bicuculline methobromide and picrotoxin. The results implicate GABA, acting through GABA-A and possibly GABA-B receptors, in the regulation of NAT activity in retina.  相似文献   

10.
Summary The vestibulo-ocular reflex undergoes adaptive changes that require inputs from the cerebellar flocculus onto brainstem vestibular neurons. As a step toward developing an in vitro preparation in chicks for studying the synaptic basis of those changes, we have elucidated the organization of the pathways through which the flocculus influences vestibulo-ocular movements. Electrical stimulation of the vestibular ampulla evoked brief, contralaterally directed movements in both eyes. Although single current pulses to the flocculus elicited no response, conjunctive stimulation of the flocculus and the vestibular apparatus significantly reduced the vestibularly-evoked movement. Trains of current pulses applied to the flocculus and ampulla evoked eye movements directed toward and away from the side of stimulation, respectively. Recordings from the brainstem revealed neurons that were activated by ipsilateral vestibular stimulation and inhibited by ipsilateral floccular stimulation. Our sample included neurons in the lateral vestibular nucleus, the ventrolateral portion of the medial vestibular nucleus, and the superior vestibular nucleus. Similarities between these findings and those of similar studies in mammals indicate that the chick will provide a good model system for cellular studies of adaptive changes in the vestibulo-ocular reflex.Abbreviations FTN flocculus target neuron - VOR vestibuloocular reflex  相似文献   

11.
Extinct animal behavior has often been inferred from qualitative assessments of relative brain region size in fossil endocranial casts. For instance, flight capability in pterosaurs and early birds has been inferred from the relative size of the cerebellar flocculus, which in life protrudes from the lateral surface of the cerebellum. A primary role of the flocculus is to integrate sensory information about head rotation and translation to stabilize visual gaze via the vestibulo-occular reflex (VOR). Because gaze stabilization is a critical aspect of flight, some authors have suggested that the flocculus is enlarged in flying species. Whether this can be further extended to a floccular expansion in highly maneuverable flying species or floccular reduction in flightless species is unknown. Here, we used micro computed-tomography to reconstruct “virtual” endocranial casts of 60 extant bird species, to extract the same level of anatomical information offered by fossils. Volumes of the floccular fossa and entire brain cavity were measured and these values correlated with four indices of flying behavior. Although a weak positive relationship was found between floccular fossa size and brachial index, no significant relationship was found between floccular fossa size and any other flight mode classification. These findings could be the result of the bony endocranium inaccurately reflecting the size of the neural flocculus, but might also reflect the importance of the flocculus for all modes of locomotion in birds. We therefore conclude that the relative size of the flocculus of endocranial casts is an unreliable predictor of locomotor behavior in extinct birds, and probably also pterosaurs and non-avian dinosaurs.  相似文献   

12.
The paper deals with analysis of the influence of blockade of separate components of benzodiazepine-GABA-ionophore complex on the recovery of memory trace amnesia under GABA-A and GABA-B receptors activation in the experiments with conditioned reaction of passive avoidance of mice. Activation of GABA-A receptors did not change the behavioural amnesia manifestation at all terms of testing. Activation of GABA-B receptors before learning and amnestic influence caused spontaneous recovery of avoidance reaction. Blockade of chloride channel by picrotoxin and of benzodiazepine receptor by flumazepil restored the reproduction of the memory trace disturbed against the background of GABA-B receptors activation. Systemic flumazepil administration contributed to the memory trace reproduction against the background of GABA-A receptors activation by muscimol in the dose of 0.5 mg/kg. In conditions of amnesia development against the background of muscimol in the dose of 1 mg/kg the blockade of any component of benzodiazepine-GABA-ionophore complex was not effective. The obtained data testify that activation of GABA-A and GABA-B receptors changes the amnesia development and correction of amnesia memory trace by the blockade of separate components of benzodiazepine-GABA-ionophore complex.  相似文献   

13.
Elevated plasma levels of homocysteine (Hcy) are associated with vascular dementias and Alzheimer's disease. The role of Hcy in brain microvascular endothelial cell (MVEC) remodeling is unclear. Hcy competes with muscimol, an gamma-amino butyric acid (GABA)-A receptor agonist. GABA is the primary inhibitory neurotransmitter in the brain. Our hypothesis is that Hcy induces constrictive microvascular remodeling by altering GABA-A/B receptors. MVEC from wild type, matrix metalloproteinase-9 (MMP-9) knockout (-/-), heterozygote cystathionine beta synthase (CBS-/+), and endothelial nitric oxide synthase knockout (eNOS-/-) mouse brains were isolated. The MVEC were incorporated into collagen (3.2 mg/ml) gels and the decrease in collagen gel diameter at 24 h was used as an index of constrictive MVEC remodeling. Gels in the absence or presence of Hcy were incubated with muscimol or baclofen, a GABA-B receptor agonist. The results suggested that Hcy-mediated MVEC collagen gel constriction was ameliorated by muscimol, baclofen, MMP-9, and eNOS gene ablations. There was no effect of anti-alpha 3 integrin. However, Hcy-mediated brain MVEC collagen constriction was abrogated with anti-beta-1 integrin. The co-incubation of Hcy with L-arginine ameliorated the Hcy-mediated collagen gel constriction. The results of this study indicated amelioration of Hcy-induced MVEC collagen gel constriction by induction of nitric oxide through GABA-A and -B receptors.  相似文献   

14.
The inhibitory neurotransmitter GABA activates two receptor subtypes that can be distinguished by their pharmacology. The GABA-A site is competitively antagonized by bicuculline and exclusively coupled to a chloride channel. The GABA-B receptor, for which baclofen is the only specific agonist, is resistant to bicuculline inhibition and, depending upon its localization, will activate K currents and/or inhibit Ca currents. Both electrophysiological and biochemical approaches have been applied to the study of each receptor. The membrane and intracellular components that to date have been implicated in GABA-B activation are discussed: G proteins, adenylate cyclase and intracellular calcium levels. This latter factor is also discussed with respect to GABA-A receptor action.  相似文献   

15.
While firing rate is well established as a relevant parameter for encoding information exchanged between neurons, the significance of other parameters is more conjectural. Here, we show that regularity of neuronal spike activities affects sensorimotor processing in tottering mutants, which suffer from a mutation in P/Q-type voltage-gated calcium channels. While the modulation amplitude of the simple spike firing rate of their floccular Purkinje cells during optokinetic stimulation is indistinguishable from that of wild-types, the regularity of their firing is markedly disrupted. The gain and phase values of tottering's compensatory eye movements are indistinguishable from those of flocculectomized wild-types or from totterings with the flocculus treated with P/Q-type calcium channel blockers. Moreover, normal eye movements can be evoked in tottering when the flocculus is electrically stimulated with regular spike trains mimicking the firing pattern of normal simple spikes. This study demonstrates the importance of regularity of firing in Purkinje cells for neuronal information processing.  相似文献   

16.
Yamazaki T  Nagao S 《PloS one》2012,7(3):e33319
Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing control, few models have aimed to unify them. In this paper, we hypothesize that gain and timing control can be unified by learning of the complete waveform of the desired movement profile instructed by climbing fiber signals. To justify our hypothesis, we adopted a large-scale spiking network model of the cerebellum, which was originally developed for cerebellar timing mechanisms to explain the experimental data of Pavlovian delay eyeblink conditioning, to the gain adaptation of optokinetic response (OKR) eye movements. By conducting large-scale computer simulations, we could reproduce some features of OKR adaptation, such as the learning-related change of simple spike firing of model Purkinje cells and vestibular nuclear neurons, simulated gain increase, and frequency-dependent gain increase. These results suggest that the cerebellum may use a single computational mechanism to control gain and timing simultaneously.  相似文献   

17.
The influence of GABA receptor agonists on the terminal differentiation in vitro of dopaminergic (DA) neurons derived from IPS cells was investigated. GABA-A agonist muscimol induced transient elevation of intracellular Ca2+ level ([Ca2+]i) in the investigated cells at days 5 to 21 of differentiation. Differentiation of cells in the presence of muscimol reduced tyrosine hydroxylase expression. Thus, the presence of active GABA-A receptors, associated with phenotype determination via Ca2+-signalling was demonstrated in differentiating human DA neurons.  相似文献   

18.
In the developing visual system of Xenopus laevis retinal ganglion cell (RGC) axons extend through the brain towards their major target in the midbrain, the optic tectum. Enroute, the axons are guided along their pathway by cues in the environment. In vitro, neurotransmitters have been shown to act chemotropically to influence the trajectory of extending axons and regulate the outgrowth of developing neurites, suggesting that they may act to guide or modulate the growth of axons in vivo. Previous work by Roberts and colleagues (1987) showed that populations of cells within the developing Xenopus diencephalon and mid-brain express the neurotransmitter gamma amino butyric acid (GABA). Here we show that Xenopus RGC axons in the midoptic tract grow alongside the GABAergic cells and cross their GABA immunopositive nerve processes. Moreover, RGC axons and growth cones express GABA-A and GABA-B receptors, and GABA and the GABA-B receptor agonist baclofen both stimulate RGC neurite outgrowth in culture. Finally, the GABA-B receptor antagonist CGP54626 applied to the developing optic projection in vivo causes a dose-dependent shortening of the optic projection. These data indicate that GABA may act in vivo to stimulate the outgrowth of Xenopus RGC axons along the optic tract.  相似文献   

19.
20.
The effects of three consecutive injections of 2 ml/kg 30% alcohol (ethanol, i.v.) on the activity of identified cerebellar Purkinje cells were investigated during experiments on adult cats anesthetized by a Nembutal-chloralose mixture. It was found that repeated alcohol injections exert a cumulative effect on the firing rate of these cells. The alcohol-induced rise in Purkinje cell firing rate, produced by excitation of the mossy fibers, was generally accompanied by a reduction in that of cells responding to excitation of climbing fibers. The inhibitory pause occurring after complex discharges in cerebellar Purkinje cells grew shorter with successive alcohol injections.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 74–80, January–February, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号