首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》1987,893(2):149-160
The Photosystem I reaction center is a membrane-bound, multiprotein complex containing a primary electron donor (P-700), a primary electron acceptor (A0), an intermediate electron acceptor (A1) and three membrane-bound iron-sulfur centers (FX, FB, and FA). We reported in part I of this series (Golbeck, J.H. and Cornelius, J.M. (1986) Biochim. Biophys. Acta 849, 16–24) that in the presence of 1% lithium dodecyl sulfate (LDS), the reaction center becomes dissociated, resulting in charge separation and recombination between P-700 and FX without the need for prereduction of FA and FB. In this paper, we report (i) the LDS-induced onset of the 1.2-ms ‘fast’ phase of the P-700 absorption transient is time-dependent, attaining a maximum 3:1 ratio of ‘fast’ to ‘slow’ kinetic phases; (ii) the ‘fast’ kinetic phase, corresponding to the P-700+ FX backreaction, is stabilized indefinitely by dilution of the LDS-treated particle followed by ultrafiltration over a YM-100 membrane; (iii) without stabilization, the P-700+ FX reaction deteriorates, leading to the rise of the long-lived P-700 triplet formed from the P-700+AO backreaction; (iv) the ‘slow’ kinetic phase correlates with the redox and ESR properties of FA and/or FB, which indicates that in a minority of particles the terminal iron-sulfur protein remains attached to the reaction center core; (v) the ultrafiltered reaction center is severely deficient in all of the low molecular-weight polypeptides, particularly the 19-kDa, 18-kDa and 12-kDa polypeptides relative to the 64-kDa polypeptide(s); (vi) the stabilized particle contains 5.8 mol labile sulfide per mol photoactive P-700, reflecting largely the iron-sulfur content of Fx, but also residual FA and FB, on the reaction center; and (vii) the apoproteins of FA and FB are physically removed from the reaction center particle as indicated by the presence of protein-bound zero-valence sulfur in the YM-100 filtrate. These results are interpreted in terms of a model for Photosystem I in which FA and FB are located on a low-molecular-weight polypeptide and FX is depicted as a [2Fe-2S] cluster shared between the two high-molecular-weight polypeptides Photosystem I-A1 and Photosystem I-A2.  相似文献   

2.
Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in the highly conserved region that is proposed to bind iron-sulfur center FX in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%.Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of –414 mV with n=2 titration behavior. In membranes, the behavior is intermediate between n=1 and n=2, and the apparent midpoint potential is –444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators.These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.Abbreviations BChl bacteriochlorophyll - %C percent bisacrylamide as a percentage of total acrylamide - DTT dithiothreitol - EPR electron paramagnetic resonance - Fe-S iron-sulfur center - H. Heliobacterium - Hb. Heliobacillus - k one thousand - Mr molecular retention - PS I Photosystem I - PS II Photosystem II - RCs reaction centers - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide electrophoresis - %T percent total acrylamide - Tris tris(hydroxymethyl)aminomethane  相似文献   

3.
Incubation of spinach thylakoids with HgCl2 selectively destroys Fe–S center B (FB). The function of electron acceptors in FB-less PS I particles was studied by following the decay kinetics of P700+ at room temperature after multiple flash excitation in the absence of a terminal electron acceptor. In untreated particles, the decay kinetics of the signal after the first and the second flashes were very similar (t 1/22.5 ms), and were principally determined by the concentration of the artificial electron donor added. The decay after the third flash was fast (t 1/20.25 ms). In FB-less particles, although the decay after the first flash was slow, fast decay was observed already after the second flash. We conclude that in FB-less particles, electron transfer can proceed normally at room temperature from FX to FA and that the charge recombination between P700+ and FX -/A1 - predominated after the second excitation. The rate of this recombination process is not significantly affected by the destruction of FB. Even in the presence of 60% glycerol, FB-less particles can transfer electrons to FA at room temperature as efficiently as untreated particles.Abbreviations DCIP 2, 6-dichlorophenol indophenol - FA, FB, FX iron-sulfur center A, B and X, respectively - PMS phenazine methosulfate  相似文献   

4.
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278–290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]? recombination, and the latter from P798+ FX ? recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe–4S]1+,2+ cluster with a ground spin state of S = 3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of ~22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]? recombination and the light-induced EPR resonances of FA ? and FB ?. The gene was named ‘pshB’ and the protein ‘PshB’ in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.  相似文献   

5.
The reversible inhibition of Photosystem II by salicylaldoxime was studied in spinach D-10 particles by fluorescence, optical absorption, and electron spin resonance spectroscopy. In the presence of 15 mM salicylaldoxime, the initial fluorescence yield was raised to the level of the maximum fluorescence, indicating efficient charge recombination between reduced pheophytin (Ph) and P680+. In agreement with the rapid (ns) backreaction expected between Ph and P680+, the optical absorption transient at 820 mm was not observed. When the particles were washed free of salicylaldoxime, the optical absorption transient resulting from the rereduction of P680+ was restored to the µs timescale. These results, along with the previously observed inhibition of electron transport reactions and diminution of the 515-nm absorption change in chloroplasts [Golbeck, J.H. (1980) Arch Biochem Biophys 202, 458–466], are consistent with a site of inhibition between Ph and QA in Photosystem II. ESR Signal IIf and Signal Its were abolished in the presence of 25 mM salicylaldoxime, but both signals could be recovered by washing the D-10 particles free of the inhibitor. The loss of Signal Ilf is most likely a consequence of the inhibition between Ph and QA; the rapid charge recombination between Ph and P680+ would preclude electron transfer from an electron donor on the oxidizing side of Photosystem II. The loss of Signal Its may be due to a change in the environment of the donor complex such that the semiquinone radical giving rise to Signal Its interacts with a nearby reductant.Abbreviations D1 electron donor to P680+ in oxygen-inhibited chloroplasts - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F0 prompt chlorophyll a fluorescence yield - Fi initial chlorophyll a fluorescence yield - Fmax maximum chlorophyll a fluorescence yield - Fvar variable chlorophyll a fluorescence yield - FWHM full width at half maximum - Mes 2-(N-morpholino) ethanesulfonic acid - P680 reaction center chlorophyll a of photosystem II - Ph pheophytin intermediate electron acceptor - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - Tris tris(hydroxymethyl)aminomethane - Z electron donor to P680+  相似文献   

6.
《BBA》1987,893(2):232-240
The spectroscopic and thermodynamic properties of the electron-transport components of the photosynthetic bacterium Heliobacterium chlorum were studied by means of absorbance-difference spectroscopy. Upon flash illumination of membranes of H. chlorum photooxidation of the primary electron donor, P-798, was observed. In about 15% of the reaction centers P-798+ was reduced by cytochrome c-553, while in the remaining reaction centers P-798+ reduction occurred via a back reaction with a reduced electron acceptor. Titration experiments indicated a midpoint potential of −440 mV for the electron acceptor. At low redox potentials the formation of the triplet of P-798 was observed after a flash. The triplet was formed in about 30 ns by a back reaction with a reduced electron acceptor and decayed with a time constant of 35 μs. The yield of triplet formed in a flash was 30%. Upon continuous illumination at low redox potentials the accumulation in the reduced state of an electron acceptor was observed. The difference spectrum of this acceptor indicates that it is an iron-sulfur center. The yield of triplet formation was independent of the redox state of the iron-sulfur center, which indicates that the center is not located in the main electron-transport chain. A scheme with three acceptors in the main electron-transport chain is presented to accomodate our results and those of others.  相似文献   

7.
《BBA》1987,891(1):94-98
Core extrusion of the bound iron-sulfur centers from spinach Photosystem I showed the presence of [2Fe-2S] clusters as well as [4Fe-4S] clusters among FA, FB and FX. Extrusion of the iron-sulfur ensemble was not quantitative; however, the presence of [2Fe-2S] clusters correlated with higher concentration of unfolding solvent. Since FX is highly resistant to denaturation, and since FA and FB are known to contain [4Fe-4S] clusters, the [2Fe-2S] clusters are assigned to FX. The presence of [2Fe-2S] clusters in Photosystem I has significance in the structure and organization of FX on the reaction center. Since four cysteinyl ligands are assumed to hold an iron-sulfur cluster, a Photosystem I subunit may consist of two approx. 64-kDa proteins bridged by a single [2Fe-2S] cluster. The complete reaction center would consist of two subunits positioned so that two [2Fe-2S] clusters are in magnetic interaction, thereby constituting FX.  相似文献   

8.
Photochemical efficiencies of photosystem I (PSI) and photosystem II (PSII) were studied in dry thalli of the lichen Hypogymnia physodes and during their re-hydration. In dry thalli, PSII reaction centers are photochemically inactive, as evidenced by the absence of variable chlorophyll (Chl) fluorescence, whereas the primary electron donor of PSI, P700, exhibits irreversible oxidation under continuous light. Upon application of multiple- and, particularly, single-turnover pulses in dry lichen, P700 oxidation partially reversed, which indicated recombination between P700+ and the reduced acceptor FX of PSI. Re-wetting of air-dried H. physodes initiated the gradual restoration of reversible light-induced redox reactions in both PSII and PSI, but the recovery was faster in PSI. Two slow components of P700+ reduction occurred after irradiation of partially and completely hydrated thalli with strong white light. In contrast, no slow component was found in the kinetics of re-oxidation of QA, the reduced primary acceptor of PSII, after exposure of such thalli to white light. This finding indicated the inability of PSII in H. physodes to provide the reduction of the plastoquinone pool to significant levels. It is concluded that slow alternative electron transport routes may contribute to the energetics of photosynthesis to a larger extent in H. physodes than in higher plants.Abbreviations A0 and A1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - Chl a Chlorophyll a - Fm Maximal level of chlorophyll fluorescence when all PSII centers are closed - Fo Minimal level of fluorescence when all PSII centers are open after dark adaptation - FR Far-red - Fv Variable fluorescence (=FmFo) - FX, FA, and FB Iron–sulfur centers - MT pulse Multiple-turnover pulse - PS Photosystem - P700 Reaction center chlorophyll of PSI - QA Primary quinone acceptor of PSII - QB Secondary quinone acceptor of PSII - ST pulse Single-turnover pulse  相似文献   

9.
Pierre Stif  Paul Mathis  Tore Vnngrd 《BBA》1984,767(3):404-414
Electron transport has been studied by flash absorption and EPR spectroscopies at 10–30 K in Photosystem I particles prepared with digitonin under different redox conditions. In the presence of ascorbate, an irreversible charge separation is progressively induced at 10 K between P-700 and iron-sulfur center A by successive laser flashes, up to a maximum which corresponds to about two-thirds of the reaction centers. In these centers, heterogeneity of the rate for center A reduction is also shown. In the other third of reaction centers, the charge separation is reversible and relaxes with a t1/2 ≈ 120 μs. When the iron-sulfur centers A and B are prereduced, the 120 μs relaxation becomes the dominant process (70–80% of the reaction centers), while a slow component (t1/2 = 50–400 ms) reflecting the recombination between P-700+ and center X occurs in a minority of reaction centers (10–15%). Flash absorption and EPR experiments show that the partner of P-700+ in the 120 μs recombination is neither X nor a chlorophyll but more probably the acceptor A1 as defined by Bonnerjea and Evans (Bonnerjea, J. and Evans, M.C.W. (1982) FEBS Lett. 148, 313–316). The role of center X in low-temperature electron flow is also discussed.  相似文献   

10.
The FB iron-sulfur cluster is destroyed preferentially by treating Photosystem I complexes with HgCl2(Kojima Y, Niinomi Y, Tsuboi S, Hiyama T and Sakurai H (1987) Bot Mag 100: 243–53). When FB is 95% depleted but FAis quantitatively retained in cyanobacterial PS I complexes, the reduction potential of FA remains highly electronegative (Em=–530 mV, n=1), the EPR spectral and spin relaxation properties of FA and FXremain unchanged, but NADP+ photoreduction rates decline from 552 to 72 mol mg Chl–1 h–1.When FB is reconstituted with FeCl3, Na2S and -mercaptoethanol, NADP+photoreduction rates recover to 528 mol mg Chl–1 h–1. The correlation between the presence of FBand NADP+ photoreduction provides direct experimental evidence that this iron-sulfur cluster is required for electron throughput from cytochromec 6 to flavodoxin or ferredoxin in Photosystem I.Abbreviations Chl chlorophyll - DPIP dichlorophenolindophenol - PS I Photosystem I Published as Journal Series #11091 of the University of Nebraska Agricultural Research Division. This paper is dedicated to the memory of the late Professor Daniel Arnon, who is remembered for his gracious and generous encouragement of the senior author's early career.  相似文献   

11.
A site directed mutant of the Photosystem I reaction center of Chlamydomonas reinhardtii has been described previously. [Hallahan et al. (1995) Photosynth Res 46: 257–264]. The mutation, PsaA: D576L, changes the conserved aspartate residue adjacent to one of the cysteine ligands binding the Fe-SX center to PsaA. The mutation, which prevents photosynthetic growth, was observed to change the EPR spectrum of the Fe-SA/B centers bound to the PsaC subunit. We suggested that changes in binding of PsaC to the PsaA/PsaB reaction center prevented efficient electron transfer. Second site suppressors of the mutation have now been isolated which have recovered the ability to grow photosynthetically. DNA analysis of four suppressor strains showed the original D576L mutation is intact, and that no mutations are present elsewhere within the Fe-SX binding region of either PsaA or PsaB, nor within PsaC or PsaJ. Subsequent genetic analysis has indicated that the suppressor mutation(s) is nuclear encoded. The suppressors retain the altered binding of PsaC, indicating that this change is not the cause of failure to grow photosynthetically. Further analysis showed that the rate of electron transfer from the quinone electron carrier A1 to Fe-SX is slowed in the mutant (by a factor of approximately two) and restored to wild type rates in the suppressors. ENDOR spectra of A1 ·– in wild-type and mutant preparations are identical, indicating that the electronic structure of the phyllosemiquinone is not changed. The results suggest that the quinone to Fe-SX center electron transfer is sensitive to the structure of the iron-sulfur center, and may be a critical step in the energy conversion process. They also indicate that the structure of the reaction center may be modified as a result of changes in proteins outside the core of the reaction center.  相似文献   

12.
Flash-induced optical kinetics at room temperature of cytochrome (Cyt) c 551 and an Fe-S center (CFA/CFB) bound to a purified reaction center (RC) complex from the green sulfur photosynthetic bacterium Chlorobium tepidum were studied. At 551 nm, the flash-induced absorbance change decayed with a t 1/2 of several hundred ms, and the decay was accelerated by 1-methoxy-5-methylphenazinium methyl sulfate (mPMS). In the blue region, the absorbance change was composed of mPMS-dependent (Cyt) and mPMS-independent component (CFA/CFB) which decayed with a t 1/2 of 400–650 ms. Decay of the latter was effectively accelerated by benzyl viologen (Em –360 mV) and methyl viologen (–440 mV), and less effectively by triquat (–540 mV). The difference spectrum of Cyt c had negative peaks at 551, 520 and 420 nm, with a positive rise at 440 to 500 nm. The difference spectrum of CFA/CFB resembled P430 of PSI, and had a broad negative peak at 430435 nm.Abbreviations (B)Chl (bacterio)chlorophyll - Cyt cytochrome - FA, FB and FX iron-sulfur center A, B and X of Photosystem I - CFA, CFB and CFX FA-,FB- and FX-like Fe-S center of Chlorobium - mPMS 1-methoxy-5-methylphenazinium methyl sulfate - PSI Photosystem I - RC reaction center  相似文献   

13.
The green sulfur bacterium Chlorobium vibrioforme was cultured in the presence of ethylene to selectively inhibit the synthesis of the chlorosome antenna BChl d. Use of these cells as starting material simplified the isolation of a photoactive antenna-depleted membrane fraction without the use of high concentrations of detergents. The preparation had a BChl alpha/P840 of 50, and the spectral properties were similar to those of preparations isolated from cells grown with a normal complement of chlorosomes. The membrane preparation was active in NADP+ photoreduction. This indicated that the fraction contained reaction centers with complete electron-transfer sequences which were then characterized further by flash kinetic spectrophotometry and EPR. We confirmed that cytochrome c553 is the endogenous donor to P840+, and at room temperature we observed a recombination reaction between the reduced terminal acceptor and P840+ with a t1/2 = 7 ms. Oxidative degradation of iron-sulfur centers using low concentrations of chaotropic salts introduced a faster recombination reaction of t1/2 = 50 microseconds which was lost at higher concentrations of chaotrope, indicating the participation of another iron-sulfur redox center earlier than the terminal acceptor. Cluster insertion using ferric chloride and sodium sulfide in the presence of 2-mercaptoethanol restored both the 50-microseconds and 7-ms recombination reactions, allowing definitive assignments of these centers as iron-sulfur centers. Following the suggestion of Nitschke et al. [(1990) Biochemistry 29, 3834-3842], we associate these two kinetic phases to back-reactions between P840+ and iron-sulfur centers FX and FAFB, respectively. The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center. At 77 K we observed a recombination reaction of t1/2 = 20 ms that we suggest occurs between Fx- and P840+. Degradation of the iron-sulfur clusters resulted in replacement of the 20-ms phase with a faster reaction of t1/2 = 80 microseconds that was most likely a recombination between the early acceptor A1- and P840+ or decay of 3P840. Analysis of the iron-sulfur centers in the preparation by EPR at cryogenic temperature supports the optical measurements. EPR signals originating from the terminal acceptor(s) were not observed following treatment of the membrane preparation by chaotropes, and a modified signal was restored following cluster reinsertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In this review, the main research developments that have led to the current simplified picture of photosystem I are presented. This is followed by a discussion of some conflicting reports and unresolved questions in the literature. The following points are made: (1) the evidence is contradictory on whether P700, the primary donor, is a monomer or dimer of chlorophyll although at this time the balacnce of the evidence points towards a monomeric structure for P700 when in the triplet state; (2) there is little evidence that the iron sulfur centers FA and FB act in series as tertiary acceptors and it is as likely that they act in parallel under physiological conditions; (3) a role for FX, probably another iron sulfur centrer, as an obligatory electron carrier in forward electron transfer has not been proven. Some evidence indicates that its reduction could represent a pathway different to that involving FA and FB; (4) the decay of the acceptor A2 as defined by optical spectroscopy corresponds with 700+ % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaadaqdaaqaaiaadIfaaaaabeaaaaa!37D1!\[F_{\overline X } \] recombination under some circumstances but under other conditions it probably corresponds with P700+ A1 recombination; (5) P700+ A1 recombination as originally observed by optical spectroscopy is probably due to the decay of the P700 triplet state; (6) the acceptor A1 as defined by EPR may be a special semiquinone molecule; (7) A0 is probably a chlorophyll a molecule which acts as the primary acceptor. Recombination of P700+ A0 gives rise to the P700 triplet state.A working model for electron transfer in photosystem I is presented, its general features are discussed and comparisons with other photosystems are made.  相似文献   

15.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

16.
Reaction center-B875 pigment-protein complexes were purified from Rhodocyclus gelatinosus. The proteic components consist of 7–8 polypeptides among which some were identified by their apparent molecular weights: the light harvesting B875 polypeptides and of 8 and 6 kDa, reaction center L (23 kDa), M (28 kDa) and H (34 kDa), cytochrome c (43 kDa). Four c-type hemes were found per reaction center. Flash-induced absorbance changes showed the presence of both QA and QB in the complex. Charge recombination times were determined to be: 1.16±0.2 (n=30) for P+QAQB - and 7–10 ms for P+QA - in presence of herbicides. From quinone analysis on one hand and kinetics of charge recombination on the other hand, we proposed that in the reaction center of Rhodocyclus gelatinosus QA is menaquinone 8 and QB is ubiquinone 8.  相似文献   

17.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   

18.
The kinetic and spectroscopic properties of the secondary electron acceptor A1 were determined by flash absorption spectroscopy at room and cryogenic temperatures in a Photosystem I (PS I) core devoid of the iron-sulfur clusters FX, FB and FA. It was shown earlier (Warren, P.V., Golbeck, J.H. and Warden, J.T. (1993) Biochemistry 32: 849–857) that the majority of the flash-induced absorbance increase at 820 nm, reflecting formation of P700+, decays with a t1/2 of 10 s due to charge recombination between P700+ and A1 . Following A1 directly around 380 nm, where absorbance changes due to the formation of P700+ are negligible, two major decay components were resolved in this study with t1/2 of 10 s and 110 s at an amplitude ratio of 2.5:1. The difference spectra between 340 and 490 nm of the two kinetic phases are highly similar, showing absorbance increases from 340 to 400 nm characteristic of the one-electron reduction of the phylloquinone A1. When measured at 10 K, the flash-induced absorbance changes around 380 nm can be fitted with two decay phases of t1/2 15 s and 150 s at an amplitude ratio 1:1. The difference spectra of both kinetic phases from 340 to 400 nm are similar to those determined at 298 K and are therefore attributed to charge recombination in the pair P700+A1 . These results indicate that the backreaction between P700+ and A1 is multiphasic when FX, FB and FA are removed, and only slightly temperature dependent in the range of 298 K to 10 K.Abbreviations Chl chlorophyll - D pathlength for the measuring light through the sample - DPIP 2,6-dichlorophenolindophenol - EPR electron paramagnetic resonance - IR infrared - PS I Photosystem I - Tris Tris(hydroxymethyl)aminomethane - UV ultraviolet Published as Journal Series #10890 of the University of Nebraska Agricultural Research Division and supported by a grant from the National Science Foundation (MCB-9205756).  相似文献   

19.
Ramesh  V.M.  Fish  A.  Michaeli  D.  Keren  N.  Ohad  I.  Vorchovsky  L.  Nechushtai  R. 《Photosynthetica》2002,40(3):355-361
A novel purification procedure was developed for the isolation of oxygen evolving photosystem 2 (PS2) from Mastigocladus laminosus. The isolation procedure involves dodecyl maltoside extraction followed by column chromatography using anion exchange resins. The isolated PS2 reaction center (RC) was analyzed for its biochemical and biophysical characteristics. Analysis by SDS polyacrylamide gel electrophoresis revealed that the complex contained five intrinsic membrane proteins (CP 47, CP 43, D1, D2, and cyt b 559) and at least three low molecular mass proteins. The complex exhibited high rates of oxygen evolution [333 mmol(O2) kg–1(Chl) s–1] in the presence of 2.5 mM 2,6-dimethylbenzoquinone (DMBQ) as an artificial electron acceptor. The red chlorophyll a absorption peak of this complex was observed at 673.5±0.2 nm. The isolated PS2 core complex was free of photosystem 1 as inferred from its SDS-PAGE and fluorescence spectrum. The electron transfer properties of the Mastigocladus cells and the purified PS2 core complex were further probed by measuring thermoluminescence signals, which indicated the presence of a primary quinone electron acceptor (QA) in the purified PS2 core complex.  相似文献   

20.
The far-red limit of photosystem I (PS I) photochemistry was studied by EPR spectroscopy using laser flashes between 730 and 850 nm. In manganese-depleted spinach thylakoid membranes, the primary donor in PS I, P700, was oxidized simultaneously with tyrosine Z, the secondary donor in PS II. It was found that at 295 K PS I photochemistry, observed as P700+ formation, was functional up to 840 nm. This is 30 nm further to the red region than was reported for PS II photochemistry (Thapper, A., Mamedov, F., Mokvist, F., Hammarström, L., and Styring, S. (2009) Plant Cell 21, 2391–2401). The same far-red limit for the P700+ formation was observed in a PS I reaction center core preparation from Nostoc punctiforme. The reduction of the acceptor side of PS I, observed as reduction of the iron-sulfur centers FA and FB by low temperature EPR measurements, was also functional at 15 K with light up to >830 nm. Taken together, these results, obtained from both plants and cyanobacteria, most likely rule out involvement of the red-absorbing antenna chlorophylls in this reaction. Instead we propose the existence of weak charge transfer bands absorbing in the far-red region in the ensemble of excitonically coupled chlorophyll a molecules around P700 similar to what has been found in the reaction center of PS II. These charge transfer bands could be responsible for the far-red light absorption leading to PS I photochemistry at wavelengths up to 840 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号