首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of the Haber-Weiss reaction and other interactions between free radicals has been investigated in the effects of mixtures of free radicals on the permeability of resealed erythrocyte ghosts and on the activity of membrane-bound glyceraldehyde-3-phosphate dehydrogenase. The following mixtures were found to induce damage greater than that which could be accounted for by the independent actions of the constituent free radicals: (i) · OH + H2O2, and (ii) · OH + H2O2 + O2?. In contrast, the following mixtures were found to induce less damage than that predicted on the basis of independent actions of constituent free radicals: (i) H2O2 + O2?, and (ii) oxidizing radicals ( · OH, H2O2) + reducing radicals (e?, H · ). These results suggest a Haber-Weiss-like interaction between H2O2 and O2?and an interaction between H2O2 and · OH to produce a species more potent than either in causing increased permeability. The decrease in damage observed in the simultaneous presence of oxidizing and reducing radicals suggests an antagonistic effect by which each tends to moderate damage by the other. Inactivation of glyceraldehyde-3-phosphate dehydrogenase was found to be more sensitive to radiation than permeability by an order of magnitude, while permeability was more sensitive to the enhancement of damage by oxygen. Comparison of the effectiveness of free radical scavengers in inhibiting the increase in permeability caused by free radicals showed the following order of effectiveness, expressed in terms of percentage protection: formate (90%) > nitrogen (65%) > catalase (60%) > dismutase (32%), and with respect to enzymatic inactivation, nitrogen (100%) > formate (77%) > dismutase (48%) > catalase (44%). The relative rates observed anaerobically and aerobically in the presence and absence of the above scavengers suggest that (at least in the case of radiation damage to the membranes of erythrocyte ghost cells) the “oxygen effect” is due to the interaction of oxygen with e? and H., producing O2? which aggravates damage under conditions which allow consequent Haber-Weiss-like reactions. The further increase in damage when oxygen concentration is raised yet higher is due to the interaction of oxygen with the sites of initial damage.  相似文献   

2.
The relative effectiveness of oxidizing (.OH, H2O2), ambivalent (O2?) and reducing free radicals (e? and CO2?) in causing damage to membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase of resealed erythrocyte ghosts has been determined. The rates of damage to membranebound glyceraldehyde-3-phosphate dehydrogenase (R(enz)) were measured and the rates of damage to membranes (R(mb)) were assessed by measuring changes in permeability of the resealed ghosts to the relatively low molecular weight substrates of glyceraldehyde-3-phosphate dehydrogenase. Each radical was selectively isolated from the mixture produced during gamma-irradiation, using appropriate mixtures of scavengers such as catalase, superoxide dismutase and formate. .OH, O2? and H2 O2 were approximately equally effective in inactivating membrane-bound glyceraldehyde-3-phosphate dehydrogenase, while e? and CO2? were the least effective. R(enz) values of O2? and H2O2 were 10-times and of .OH 15-times that of e?. R(mb) values were quite similar for e? and H2O2 (about twice that of O2?), while that of .OH was 3-times that of O2?. Hence, with respect to R(mb): .OH >e? = H2O2 >O2? , and with respect to R(enz): .OH >O2? = H2O2 >e?. The difference between the effectiveness of the most damaging and the least damaging free radicals was more than 10-fold greater in damage to the enzyme than to the membranes. Comparison between H2O2 added as a chemical reagent and H2O2 formed by irradiation showed that membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase were relatively inert to reagent H2O2 but markedly susceptible to the latter.  相似文献   

3.
The effect of H2O2 upon thioredoxin-enriched lens epithelial cells   总被引:6,自引:0,他引:6  
Thioredoxin, a dithiol polypeptide, has been examined as a potential contributor to the recovery of lens epithelial cells from oxidative insult. It is reported that Escherichia coli thioredoxin can (a) effectively reduce lens-soluble protein disulfide bonds generated by H2O2, (b) restore to its initial activity H2O2-inactivated glyceraldehyde-3-phosphate dehydrogenase, (c) act as an effective source of reducing potential for lens methionine sulfoxide peptide reductase, and (d) act as a free radical quencher based on studies with a stable free radical system generated by ascorbic acid and 2,6-dimethoxy-p-benzoquinone. Thioredoxin is much more effective than dithiothreitol in restoring glyceraldehyde-3-phosphate dehydrogenase activity and as a cofactor for methionine sulfoxide peptide reductase. Upon incubation with epithelial cells, thioredoxin can be observed in the cell using rocket immunoelectrophoresis. These cells recover from H2O2 insult more rapidly than control cell preparations based upon 1) analyses of plasma membrane-related activities: leucine and 86Rb uptake and 2) analyses of parameters primarily related to the internal cell metabolism: ATP concentration and glyceraldehyde-3-phosphate dehydrogenase activity. Analysis of thioredoxin in cell preparations indicates that only about 9% is in the reduced state implying a low effective concentration of the polypeptide. The experiments suggest that low levels of thioredoxin may significantly increase the ability of lens epithelial cells to recover from exposure to H2O2.  相似文献   

4.
Cellular metabolism of dopamine (DA) generates H2O2, which is further reduced to hydroxyl radicals in the presence of iron. Cellular damage inflicted by DA-derived hydroxyl radicals is thought to contribute to Parkinson's disease. We have previously developed procedures for detecting proteins that contain H2O2-sensitive cysteine (or selenocysteine) residues. Using these procedures, we identified ERP72 and ERP60, two members of the protein disulfide isomerase family, creatine kinase, glyceraldehyde-3-phosphate dehydrogenase, phospholipase C-gamma1, and thioredoxin reductase as the targets of DA-derived H2O2. Experiments with purified enzymes identified the essential Cys residues of creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, that are specifically oxidized by H2O2. Although the identified proteins represent only a fraction of the targets of DA-derived H2O2, functional impairment of these proteins has previously been associated with cell death. The oxidation of proteins that contain reactive Cys residues by DA-derived H2O2 is therefore proposed both to be largely responsible for DA-induced apoptosis in neuronal cells and to play an important role in the pathogenesis of Parkinson's disease.  相似文献   

5.
The thioredoxin/thioredoxin reductase system has been studied as regenerative machinery for proteins inactivated by oxidative stress in vitro and in cultured endothelial cells. Mammalian glyceraldehyde-3-phosphate dehydrogenase was used as the main model enzyme for monitoring the oxidative damage and the regeneration. Thioredoxin and its reductase purified from bovine liver were used as the regenerating system. The physiological concentrations (2-14 microM) of reduced thioredoxin, with 0.125 microM thioredoxin reductase and 0.25 mM NADPH, regenerated H2O2-inactivated glyceraldehyde-3-phosphate dehydrogenase and other mammalian enzymes almost completely within 20 min at 37 degrees C. Although the treatment of endothelial cells with 0.2-12 mM H2O2 for 5 min resulted in a marked decrease in the activity of glyceraldehyde-3-phosphate dehydrogenase, it had no effect on the activities of thioredoxin and thioredoxin reductase. Essentially all of the thioredoxin in endothelial cells at control state was in the reduced form and 70-85% remained in the reduced form even after the H2O2 treatment. The inactivated glyceraldehyde-3-phosphate dehydrogenase in a cell lysate prepared from the H2O2-treated endothelial cells was regenerated by incubating the lysate with 3 mM NADPH at 37 degrees C and the antiserum raised against bovine liver thioredoxin inhibited the regeneration. The inhibition of thioredoxin reductase activity by 13-cis-retinoic acid resulted in a decrease in the regeneration of glyceraldehyde-3-phosphate dehydrogenase in the H2O2-treated endothelial cells. The present findings provide evidence that thioredoxin is involved in the regeneration of proteins inactivated by oxidative stress in endothelial cells.  相似文献   

6.
Two high-Mr forms of chloroplast glyceraldehyde-3-phosphate dehydrogenase from spinach leaf can be separated by DEAE-cellulose chromatography. One form, the high-Mr glyceraldehyde-3-phosphate dehydrogenase, resembles an enzyme previously described [Yonuschot, G.R., Ortwerth, B.J. & Koeppe, O.J. (1970) J. Biol. Chem. 245, 4193-4198]. The other, a glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex, is characterised by possession of latent phosphoribulokinase activity, only expressed following incubation with dithiothreitol. This complex is composed not only of subunits A (39.5 kDa) and B (41.5 kDa) characteristic of the high-Mr glyceraldehyde-3-phosphate dehydrogenase, but also of a third subunit, R (40.5 kDa) comigrating with that from the active phosphoribulokinase of spinach. Incubation of the complex with dithiothreitol markedly stimulated both its phosphoribulokinase and NADPH-dependent dehydrogenase activities. This dithiothreitol-induced activation was accompanied by depolymerisation to give two predominantly NADPH-linked tetrameric glyceraldehyde-3-phosphate dehydrogenases (the homotetramer, A4, and the heterotetramer, A2B2) as well as the active dimeric phosphoribulokinase. Incubation of the high-Mr glyceraldehyde-3-phosphate dehydrogenase with dithiothreitol promoted complete depolymerisation yielding only the heterotetramer (A2B2). Possible structures suggested for the glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex are (A2B2)2A4R2 or (A2B2)(A4)2R2.  相似文献   

7.
We investigated how salicylic acid (SA) enhances H2O2 and the relative significance of SA-enhanced H2O2 in Arabidopsis thaliana. SA treatments enhanced H2O2 production, lipid peroxidation, and oxidative damage to proteins, and resulted in the formation of chlorophyll and carotene isomers. SA-enhanced H2O2 levels were related to increased activities of Cu,Zn-superoxide dismutase and were independent of changes in catalase and ascorbate peroxidase activities. Prolonging SA treatments inactivated catalase and ascorbate peroxidase and resulted in phytotoxic symptoms, suggesting that inactivation of H2O2-degrading enzymes serves as an indicator of hypersensitive cell death. Treatment of leaves with H2O2 alone failed to invoke SA-mediated events. Although leaves treated with H2O2 accumulated in vivo H2O2 by 2-fold compared with leaves treated with SA, the damage to membranes and proteins was significantly less, indicating that SA can cause greater damage than H2O2. However, pretreatment of leaves with dimethylthiourea, a trap for H2O2, reduced SA-induced lipid peroxidation, indicating that SA requires H2O2 to initiate oxidative damage. The relative significance of the interaction among SA, H2O2, and H2O2-metabolizing enzymes with oxidative damage and cell death is discussed.  相似文献   

8.
The effect of H2O2 and the hydroxyl radical (.OH) on fibronectin was investigated. .OH was generated in three ways: (i) by radiolysis with 60Co under N2O, or by the Fenton system using either (ii) equimolar Fe(2+)-EDTA and H2O2 or (iii) H2O2 and catalytic amounts of Fe(2+)-EDTA recycled with ascorbate. Each system had a different effect. H2O2 alone caused no changes, even at an 800-fold molar excess. Radiolytic .OH caused a rapid loss of tryptophan fluorescence, an increase in bityrosine fluorescence, and extensive crosslinking. The Fenton system using Fe-EDTA, H2O2, and ascorbate caused a loss in tryptophan fluorescence, a smaller increase in bityrosine than was seen with radiolytic .OH, and a threefold increase in carbonyl groups. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis fragmentation of fibronectin was seen. In contrast, when .OH was generated with equimolar Fe-EDTA and H2O2, the only change was a small increase in bityrosine fluorescence at the highest dose of oxidant. None of the systems used affected cysteine. All the changes except the loss of tryptophan by radiolytic .OH were completely inhibited with mannitol. The differences seen with radiolytic .OH and the Fe-EDTA, H2O2, ascorbate system were not solely due to O2 in the latter system since similar results were obtained under N2. The differences between radiolytic .OH and the Fenton systems could be partly due to the components of the latter systems reacting with .OH and thus competing with fibronectin. Our results demonstrate that the extent and type of fibronectin damage by .OH is dependent on the mode of radical generation.  相似文献   

9.
Synergistic damage from H2O2 and OH radicals in irradiated cells   总被引:4,自引:0,他引:4  
D Ewing 《Radiation research》1983,94(1):171-189
The anoxic sensitization of bacterial spores by added H2O2 has been studied. Two mechanistic pathways for damage from H2O2 were found; one of these requires the presence of OH radicals. For this kind of damage, the relationship between H2O2 and OH appears to be that they are reactants. O-2 (and/or HO2), the product of such a reaction, is likely the agent which actually causes damage. These results with reagent H2O2 are compared with results of experiments in which H2O2 and OH are present as radiolytic products.  相似文献   

10.
During autoxidation of the pentachlorophenol (PCP) metabolite tetrachlorohydroquinone (TCHQ) the semiquinone is formed as well as reactive oxygen species (ROS). It was examined if *OH or the semiquinone are the cause of TCHQ-induced genotoxicity by direct comparison of TCHQ- and H(2)O(2)-induced DNA damage in human cells. All endpoints tested (DNA damage, DNA repair, and mutagenicity) revealed a greater genotoxic potential for TCHQ than for H(2)O(2). In the comet assay, TCHQ induced DNA damage at lower concentrations than H(2)O(2). The damaging rate by TCHQ (tail moment (tm)/concentration) was 10-fold greater than by H(2)O(2). DNA repair was lower for TCHQ than for H(2)O(2) treatment. This was shown by measuring DNA repair in the unscheduled DNA synthesis (UDS) assay and the persistence of the DNA damage in the comet assay. In contrast to H(2)O(2), TCHQ in non-toxic concentrations was mutagenic in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus of V79 cells. Finally, there were also differences observed in cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) of TCHQ and H(2)O(2). Whereas the TCHQ cytotoxicity was enhanced during a 21h recovery phase, the H(2)O(2) cytotoxicity did not change. The results demonstrated that the pronounced genotoxic properties of TCHQ in human cells were not caused by *OH radicals but more likely by the tetrachlorosemiquinone (TCSQ) radical.  相似文献   

11.
A filtration method is described for separating membrane-free cytoplasm from concentrated erythrocyte haemolysates. The method has been used to assess glyceraldehyde-3-phosphate dehydrogenase binding to erythrocyte membranes. The relative amounts of glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase in the cytoplasm (either oxygenated or deoxygenated) indicate there is no detectable binding of glyceraldehyde-3-phosphate dehydrogenase to the membranes under physiological conditions.  相似文献   

12.
Hydrogen peroxide (H2O2) is considered a major endogenous source of oxidative stress to oral bacteria and also is widely used in oral care products. Our study objectives were to identify specific targets for H2O2-induced damage to cells of Streptococcus mutans in suspensions and monospecies biofilms and to differentiate bacteriostatic and bactericidal actions of the peroxide. Streptococcus mutans was grown in suspension cultures and fed-batch biofilms for assessing relative sensitivities of viability, glycolysis, and protein synthesis to H2O2 damage. Biofilm cells were found to have essentially the same peroxide sensitivity as cells in suspensions. H2O2 at low concentrations of about 16.3 mmol/L was highly inhibitory for glycolysis and mainly bacteriostatic. The most sensitive target detected for glycolytic inhibition was glyceraldehyde-3-phosphate dehydrogenase with IC50 (50% inhibitory concentration) values of ca. 2.2 mmol/L for suspension cells and 2.3 mmol/L for biofilms with 15 min treatments. The phosphoenolpyruvate:glucose phosphotransferase pathway was less sensitive with an IC50 of ca. 10 mmol/L. Aldolase was not inhibited at bacteriostatic concentrations of the peroxide. For suspensions and biofilms, acidification somewhat diminished peroxide sensitivity, while increased temperature enhanced sensitivity. At concentrations above about 30 mmol/L, H2O2 became mainly bactericidal but not mutagenic for S. mutans. A major target for bactericidal damage was protein synthesis, thus rendering cells incapable of repairing or replacing oxidatively damaged proteins.  相似文献   

13.
Pentalenolactone (PL) irreversibly inactivates the enzyme glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) and thus is a potent inhibitor of glycolysis in both procaryotic and eucaryotic cells. We showed that PL-producing strain Streptomyces arenae TU469 contains a PL-insensitive glyceraldehyde-3-phosphate dehydrogenase under conditions of PL production. In complex media no PL production was observed, and a PL-sensitive glyceraldehyde-3-phosphate dehydrogenase, rather than the insensitive enzyme, could be detected. The enzymes had the same substrate specificity but different catalytic and molecular properties. The apparent Km values of the PL-insensitive and PL-sensitive enzymes for glyceraldehyde-3-phosphate were 100 and 250 microM, respectively, and the PL-sensitive enzyme was strongly inhibited by PL under conditions in which the PL-insensitive enzyme was not inhibited. The physical properties of the PL-insensitive enzyme suggest that the protein is an octamer, whereas the PL-sensitive enzyme, like other glyceraldehyde-3-phosphate dehydrogenases, appears to be a tetramer.  相似文献   

14.
An aryl azide derivative of glucosamine, N-(4-iodoazidosalicyl)-2-amido-2-deoxy-D-glucopyranose (GlcNAs), was synthesized as a potential photoaffinity label for the facilitative hexose carrier. The derivative inhibited hexose uptake into intact human erythrocytes half-maximally at 3.5 mM and was itself slowly transported into cells. However, photolysis of iodinated GlcNAs with leaky erythrocyte ghosts produced appreciable labeling on gel electrophoresis only of Band 6, which is glyceraldehyde-3-phosphate dehydrogenase. Band 6 photolabeling in leaky ghosts by GlcNAs was: saturable, due mostly to the aryl azide moiety, inhibited by agents with known affinity for the enzyme including sulfhydryl reagents and the enzyme substrate glyceraldehyde-3-phosphate, and not inhibited by the free-radical scavenger p-aminobenzoic acid. Moreover, GlcNAs also inhibited erythrocyte glyceraldehyde-3-phosphate dehydrogenase activity in a dose-dependent fashion in the dark and more potently following irradiation. In resealed ghosts, Band 6 labeling was decreased by D-glucose, reflecting inhibition of carrier-mediated uptake of the agent. GlcNAs appears to be a specific photoaffinity label for erythrocyte glyceraldehyde-3-phosphate dehydrogenase, and therefore potentially useful for studies of enzyme activity, compartmentation, or membrane association.  相似文献   

15.
Incubation of HeLa cells with [32P]orthophosphate results in more rapid labeling of the gamma-phosphorus of ATP than of the intracellular pool of orthophosphate. The specific radioactivity of ATP equals that of extracellular orthophosphate after 2 h of incubation. A similar pattern of labeling is seen with human erythrocytes when incubated at physiological concentrations of orthophosphate (2 mM) and pH 7.4-7.8. At lower pH, 6.8-7.2, the rate of orthophosphate uptake increases and exceeds the rate of labeling of ATP. These data are explained by the existence of a primary system for ATP uptake which involves the mediation of membrane-bound glyceraldehyde-3-phosphate dehydrogenase. Phosphate first enters the cell as 1,3-diphosphoglyceric acid, is then transferred to ATP, and then enters the intracellular orthophosphate pool. At lower pH monovalent orthophosphate also enters the erythrocyte by a process not involving glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

16.
The yields in molecules per 100 eV for active-site and sulphydryl loss from glyceraldehyde-3-phosphate dehydrogenase have been determined in nitrous-oxide-saturated, aerated and argon-saturated solutions. Molecular hydrogen peroxide produces a sulphenic acid product, which can be repaired by post-irradiation treatment with dithiothreitol. Comparison of the yields under various conditions showed that in aerated solutions both .OH and .O2-radicals inactivated the enzyme with an efficiency of about 26 per cent. However, the efficiency of .OH in air-free solutions was less, and inactivation by .H and eaq- did not appear to be appreciable. There is a correlation between SH loss and loss of active sites.  相似文献   

17.
The denaturation of eight purified yeast enzymes, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, alcohol dehydrogenase, beta-fructosidase, hexokinase and glucose-6-phosphate isomerase, promoted under controlled conditions by the free fatty acids myristic and oleic, is selective. Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1 oxidoreductase, EC 1.1.1.49) is extremely sensitive to destabilization and was studied in greater detail. Results show that chain length and degree of unsaturation of fatty acids are important to their destabilizing effect, and that ligands of the enzyme can afford protection. The denaturation process results in more than one altered form. These results can be viewed in the perspective of the possibility that amphipathic substances, and in particular free fatty acids, may play a role for enzyme degradation in vivo, by initiating steps of selective denaturation.  相似文献   

18.
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.  相似文献   

19.
The product distributions for the reactions of dihydroxyacetone phosphate (DHAP) in D(2)O at pD 7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy using glyceraldehyde 3-phosphate dehydrogenase to trap the first-formed products of the thermodynamically unfavorable isomerization reaction, (R)-glyceraldehyde 3-phosphate (GAP) and [2(R)-(2)H]-GAP (d-GAP). Three products were observed from the reactions catalyzed by TIM: GAP from isomerization with intramolecular transfer of hydrogen (18% of the enzymatic products), d-GAP from isomerization with incorporation of deuterium from D(2)O into C-2 of GAP (43% of the enzymatic products), and [1(R)-(2)H]-DHAP (d-DHAP) from incorporation of deuterium from D(2)O into C-1 of DHAP (40% of the enzymatic products). The ratios of the yields of the deuterium-labeled products d-DHAP and d-GAP from partitioning of the intermediate of the TIM-catalyzed reactions of GAP and DHAP in D(2)O are 1.48 and 0.93, respectively. This provides evidence that the reaction of these two substrates does not proceed through a single, common, reaction intermediate but, rather, through distinct intermediates that differ in the bonding and arrangement of catalytic residues at the enediolate O-1 and O-2 oxyanions formed on deprotonation of GAP and DHAP, respectively.  相似文献   

20.
Summary An albino seedling of Zea mays L. was investigated for its potential for CO2-assimilation. In the mesophyll the number, dimensions and fine structure of chloroplasts are drastically reduced but to a lesser extent in the bundle sheath. Chlorophyll concentration is zero and carotenoid concentration almost zero. Albinism also exerts a strong influence on the stroma of bundle sheath chloroplasts; ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) activity and glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) activity is not detectable. The C4-enzymes phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (decarboxylating) (EC 1.1.1.40) and the non-photosynthetic linked enzymes malate dehydrogenase (NAD) (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1.) and glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.1.) are present in the albino seedling with activities comparable to those in etiolated maize seedlings. The potential for CO2 fixation of the albino seedlings exceeds that of comparable dark seedlings considerably. The results are discussed with regard to enzyme localization of the C4 pathway of photosynthesis.Abbreviations Aspartate aminotransferase L-aspartate-2-oxoglutarate aminotransferase-EC 2.6.1.1. - GAPDH (NAD) glyceraldehyde-3-phosphate dehydrogenase (NAD dep.)-EC 1.2.1.12 - GAPDH (NADP) glyceraldehyde-3-phosphate dehydrogenase (NADP dep.)-EC 1.2.1.13 - malic enzyme malate dehydrogenase (NADP dep., decarboxylating)-EC 1.1.1.40 - MDH malate dehydrogenase (NAD dep.)-1.1.1.37 - PEP carboxylase phosphoenolpyruvate carboxylase-EC 4.1.1.31 - RuDP carboxylase ribulose-1.5-biphosphate carboxylase-EC 4.1.1.39  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号