首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Lymphocytes from the spleens of nude (athymic) Balb/c mice were incubated with LPS and examined for alterations in cyclic nucleotide metabolism. The cGMP concentration increased to 74% above control values within 20 min after the addition of LPS. cAMP concentration appeared to have two peaks, the first at 10 min to 80% above controls. The increase in cGMP can be accounted for by the inhibition of cGMP degradation by cAMP. These changes in cyclic nucleotide metabolism are similar to those observed in the “normal” Balb/c mouse. There are several differences between the cells from the two groups: (i) a delay in the cAMP and cGMP change and (ii) LPS enhanced cAMP inhibition of cGMP degradation in the nude mouse. These differences may be explained by differences in cell populations in the two mice, other than the obvious lack of T cells. Such differences were found on the basis of cell density distribution, where lymphocytes from normal Balb/c mice were found evenly dispersed between two dextran density gradient fractions, d = 1.057 and 1.066 g/ml; whereas, lymphocytes from nude mice were found almost entirely in the d = 1.066 g/ml fraction.  相似文献   

2.
Stimulant action of the mitogenic polyanion, polyacrylic acid (PAA) was investigated in mouse lymphocyte culture in vitro. B cell division was induced by "impulsive" PAA treatment. Shortly after PAA treatment the activity of the membrane enzymes, adenylate and guanylate cyclases, was assayed according to the changes in the concentration of cAMP and cGMP. The effect of PAA on the time course of cAMP and cGMP in lymphocytes was compared to the effect of B cell mitogen of other chemical nature--bacterial lipopolysaccharide (LPS). PAA was demonstrated to produce no effect on the activity of membrane cyclase enzymes. On the contrary, following LPS addition guanylate cyclase in the lymphocyte membrane was activated within the first 5-10 minutes. Later on (after 2h) the cells activated with LPS showed an increase in adenylate cyclase activity. By the 12th-24th hour the concentration of cAMP in the LPS-stimulated cells reached 250% of the control level. The differences are discussed between the mitogenic polyanion (PAA) and the lipid-modifying mitogen (LPS) in the molecular mechanisms by which the lymphocyte responses are activated.  相似文献   

3.
In order to obtain more insight into the possible role of cyclic AMP or cyclic GMP in modulating the initial cellular processes following activation of lymphocytes, we measured the effects of the T-cell mitogen concanavalin A and other substances including hormones on the cyclic nucleotide levels in human peripheral blood lymphocytes. The enzyme activities of the corresponding nucleotide cyclases, adenylate cyclase and guanylate cyclase were measured in both isolated plasma membranes or the cytosol of resting or concanavalin A stimulated rabbit thymocytes. Concanavalin A in a mitogenic concentration of about 5-10 micrograms/ml caused small, but consistent increases in cAMP but no changes in cGMP levels during the first hour of activation. Concomitantly, the specific activity of plasma membrane-bound adenylate cyclase was always increased at least 1.5-fold 30 min after stimulation of rabbit thymocytes with concanavalin A, but no effect could be detected on the specific activities of plasma membrane-bound or soluble guanylate cyclase. At high, supraoptimal concentrations of concanavalin A (more than 20 micrograms/ml) cAMP levels dramatically increased in human lymphocytes within minutes, but cGMP levels again were unaffected. Forskolin and beta-adrenergic hormones elevated cAMP in human lymphocytes, whereas cGMP levels were increased by the addition of sodium nitroprusside or alpha-adrenergic hormones. Sodium nitroprusside, in concentrations which elevated cGMP in human lymphocytes, had no influence on the incorporation of [3H]uridine into RNA of resting or concanavalin A stimulated human lymphocytes. Addition of forskolin resulted in an increase of cAMP levels and a dose-dependent decrease of [3H]uridine incorporation into RNA of concanavalin A-stimulated lymphocytes with no effect on resting lymphocytes. The data suggest that cGMP does not play a role in the initial phase of mitogenic activation of lymphocytes, whereas cAMP may be involved in the blast transformation process as an inhibitory signal.  相似文献   

4.
The role of cyclic nucleotides in sperm capacitation is equivocal. Using conditions known to support mouse sperm capacitation after 120 min incubation in vitro, the cAMP and cGMP contents of epididymal spermatozoa were measured and the cGMP/cAMP ratio determined. The initial high cAMP content detected upon release of spermatozoa decreased within 30 min to a lower plateau, which was then maintained throughout incubation. With the cGMP content remaining approximately constant, the cGMP/cAMP ratio increased over 120 min. In the presence of 2 mM caffeine, an increased cAMP content was noted at 0 and 30 min before a fall to the plateau level. To investigate cyclic nucleotide metabolism, adenylate cyclase and phosphodiesterase activities were compared in two sperm populations, one essentially uncapacitated and the other incubated for 120 min. Adenylate cyclase activity, higher in the presence of 2 mM Mn2+ compared to Mg2+, showed increased activity at 120 min compared to 30 min incubation, while phosphodiesterase activity decreased during this period. The ability of spermatozoa to form adenosine and inosine from cAMP indicated endogenous 5′-nucleotidase and deaminase, as well as phosphodiesterase, activities. Although the endogenous cAMP content appeared to remain constant during the time that acrosome loss, hyperactivated motility and fertilizing ability can be demonstrated, activities of the enzymes responsible for cAMP metabolism indicate an increased potential for cAMP availability and turnover. The increased cGMP/cAMP ratio may also play a role during capacitation.  相似文献   

5.
The present study investigated the correlation between the light-mediated decrease in rat pineal N-acetyltransferase (NAT) observed in vivo and changes in cAMP metabolism. While exposing dark-adapted rats to light for short time periods (0–10 min) resulted in a rapid decrease in pineal NAT activity, cAMP exhibited a biphasic response. Following light exposure for 30 s there was a 50% decrease in cAMP levels. However, after 6 min of light exposure the cyclic nucleotide levels had increased 2–3 times above control values. These responses were prevented by phenoxybenzamine pretreatment and the initial decrease was mimicked by i.v. propranolol administration. Examination of cAMP metabolic enzymes, adenylate cyclase and phosphodiesterase revealed an increase in adenylate cyclase activity following 6 min of exposure to light. We discussed how the results observed in vivo compare with those observed using cultured pinealocytes.  相似文献   

6.
Adenylate cyclase activity and cAMP and cGMP content of thymus have been studied in intact and irradiated (0.029 Gy, prior to incubation) embryos and chickens. The enzyme activity is stimulated during the postnatal development. The changes in the cyclic nucleotide content are undulatory and oppositely directed. It is suggested that the observed radiation-induced stimulation of adenylate cyclase and the reciprocal changes in the cyclic nucleotide content after hatching are related to the increased specific differentiation of thymus cells.  相似文献   

7.
Using a radioimmunoassay (RIA) for the determination of adenosine 3'5' cyclic monophosphate (cAMP) and an acetylation-RIA procedure to measure guanosine 3'5' cyclic monophosphate (cGMP), we observed that cGMP levels, but not cAMP levels, were significantly elevated in murine thymocytes which had been incubated with preparations containing the thymic hormone, thymosin. Stimulation of intracellular cGMP levels was seen as early as 1 minute after incubation with thymosin fraction 5 and was maximal at approximately 10 minutes. Dose response studies indicated an optimum stimulation of cGMP with a thymosin concentration of 100 microg/ml. A control spleen fraction prepared by an identical procedure as fraction 5 did not affect the levels of either cyclic nucleotide.  相似文献   

8.
Although the chemoreceptive function of the carotid body has been known for many decades, the cellular mechanisms of sensory transduction in this organ remain obscure. Common elements in the transductive processes of many cells are the cyclic nucleotide second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Studies from our laboratory have revealed stimulus-induced changes in cyclic nucleotide levels in the carotid body as measured by RIA, but such changes in second messenger levels have not been localized to specific cellular elements in the organ. The present immunocytochemical study utilized the avidin-biotin-peroxidase method to investigate the distribution of cAMP and cGMP in the rat carotid body and to assess changes in the intensity of immunostaining following in vitro stimulation by hypoxia, forskolin, sodium nitroprusside, high potassium, and atrial natriuretic peptide. Both cAMP and cGMP immunoreactivity were localized to type I cells of organs maintained in vivo and fixed by perfusion. Organs exposed to 100% O2-equilibrated media in vitro produced low but visible levels of cAMP immunoreactivity in a majority of type I cells; hypoxia (5% O2-equilibrated media) for 10 min moderately increased the level of immunoreactivity; forskolin (10(-5) M), or forskolin combined with hypoxia, dramatically increased cAMP levels in virtually all cells. Moderate levels of cGMP immunoreactivity in control carotid bodies in vitro were strikingly reduced by hypoxia; a significant increase in cGMP levels occurred following incubation in high potassium (100 mM), and under these conditions, the decrease in cGMP immunoreactivity with hypoxia was much more pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Guanosine 3':5'-monophosphate phosphodiesterases, which appear to be under allosteric control, have been partially purified from rat liver supernatant and particulate fractions. The preferred substrate for both phosphodiesterases was cGMP (Km values: cGMP less than cIMP less than cAMP). At subsaturating concentrations of substrate, the phosphodiesterases were stimulated by purine cyclic nucleotides. The order of effectiveness for activation of cyclic nucleotide hydrolysis was cGMP greater than cIMP greater than cAMP greater than cXMP. Using cAMP derivatives as activators of cIMP hydrolysis, modifications in the ribose, cyclic phosphate, and purine moieties were shown to alter the ability of the cyclic nucleotide to activate the supernatant enzyme. cGMP, at concentrations that stimulated cyclic nucleotide hydrolysis, enhanced chymotryptic inactivation of the supernatant phosphodiesterase. At similar concentrations, cAMP was not effective. It appears that on interaction with appropriate cyclic nucleotides, this phosphodiesterase undergoes conformational changes that are associated with increased catalytic activity and enhanced susceptibility to proteolytic attack. Divalent cation may not be required for the nucleotide-phosphodiesterase interaction and resultant change in conformation.  相似文献   

10.
The relationships between changes in in vivo airway reactivity and levels cyclicAMP and cyclicGMP were determined in guinea-pig lungs after exposure to inhaled lipopolysaccharide (LPS). After LPS (30 microg.ml(-1), 1 h), guinea-pigs displayed in vivo airway hyperreactivity (AHR) at 1 h and hyporeactivity (AHOR) at 48 h, to inhaled (20 s) histamine (1 or 3 mM, respectively). Isoprenaline-stimulated cAMP or SNAP-stimulated cGMP were determined in the lungs isolated from guinea-pigs exposed to LPS inhalation to determine whether there was a relationship between AHR or AHOR and adenylyl/guanylyl cyclase and phosphodiesterase (PDE) activities. Assays were performed in the absence and presence of the non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Levels of cAMP and cGMP in its presence indicated adenylyl and guanylyl cyclase activities, respectively. The difference between cAMP and cGMP levels, in the absence and presence of IBMX, reflected relevant PDE activity. In vivo AHR was associated with increased PDE activity towards cAMP and cGMP (67 and 278%, respectively) and also increased adenylyl (47%) and guanylyl (210%) cyclase activities. In vivo AHOR at 48 h after LPS inhalation was also associated with raised cyclase activity (p < 0.05), whereas relevant PDE activity declined by 79 and 68%, compared with 48 h after vehicle. Although net stimulated cGMP levels increased during AHR and AHOR and net stimulated cAMP increased during AHOR, our index of PDE activity increased during AHR and decreased during AHOR. These results therefore support the rationale for the use of PDE-inhibitors in the treatment of respiratory diseases associated with AHR.  相似文献   

11.
Human neutrophils were incubated with granulocyte-macrophage (GM)-CSF and examined for changes in second messenger systems. Twofold increases in cGMP but not cAMP were measured after 5 to 20 min with 100 U/ml GM-CSF. Guanylate cyclase activities in membrane and cytosol fractions were increased to the same extent whether measured in the presence of Mg2+ or Mn2+, or in the cytosol with Mg2+ + N-methyl-N'-nitro-N-nitroso-guanidine. Kinetic studies of the cytosol enzyme showed no changes in the Km values for Mg2+ and Mn2+dependent guanylate cyclase activities (0.91 and 0.022 mM, respectively), whereas Vm values were increased after treating intact cells with GM-CSF. Two peaks of guanylate cyclase activity were observed, one at 10 and another at 60 min after adding 100 U/ml GM-CSF, whereas only one peak at 5 min occurred with 1 U/ml. Adenylate cyclase activity was reduced by nearly 50% after adding 100 U/ml GM-CSF for 10 to 30 min. These effects were also seen in the presence of several hormonal and nonhormonal adenylate cyclase stimulators. In contrast, small increases in adenylate cyclase activity occurred after adding 1 U/ml GM-CSF. In experiments to examine the pathway of guanylate cyclase activation by GM-CSF, we observed no changes in inositol phosphates, intracellular calcium ion, or cytosolic protein kinase C. The augmentation of chemotactic peptide-induced superoxide production by GM-CSF concentrations, may be related to the effects of the higher levels of GM-CSF to stimulate late increases in guanylate cyclase or decreases in adenylate cyclase.  相似文献   

12.
A short review of the role of cyclic nucleotides and prostaglandins (PGs) in normal and pathological functions of the heart is given. Possible interrelationships of these two regulatory systems have been studied by using spontaneously beating rat atria preparations. Addition of noradrenaline (NA) to the incubate (1 . 10(-6) M) caused an increase in amplitude and frequency which was preceded and parallelled by an elevation of the tissue cAMP level. A transient increase in cGMP and PGE values was also seen. Propranolol (5 . 10(-6) M) abolished the increase in amplitude and frequency as well as in cAMP and PGE concentrations. Indomethacin (1 . 10(-5) M) inhibited the formation of PGE. The increase in cGMP was blocked by phenoxybenzamine. Interchange between beta- and alpha-receptors according as the temperature is lowered has been described earlier. Hypothermia (20 degrees C) had a positive inotropic effect on the atria and increased the tissue cAMP concentration. Loading of the atria caused an increase in cAMP without any effects on cGMP or PGs. Slight hypoxia did not change the cAMP or PG levels, but elevated the cGMP values. Arrhythmias induced by hypo- or hyperpotassemia did not modify the biochemical parameters measured. PGF2alpha (1. 10(-5) M) normalized the atrial rhythm and increased the amplitude without changing cyclic nucleotide or PG levels. PGE1 (1 . 10(-4) M) increased the amplitude of normorhythmic atria and the tissue concentration of cAMP. PGE2 was the only PG tested which stimulated the heart adenylate cyclase in vitro. There seems to be close but complicated relationships between cyclic nucleotides and PGs in the heart.  相似文献   

13.
Concentrations of cAMP (cyclic adenosine 3',5'-monophosphate) and cGMP (cyclic guanosine 3',5'-monophosphate), in ganglia from the garden snail Helix pomatia, vary considerably over the course of the day. There is a maximum in the concentration of both cyclic nucleotides between 08:00 and 12:00 (lights on 06:00 to 18:00), with the cAMP maximum occurring slightly later than that in cGMP. In addition there can be several smaller maxima in cAMP and cGMP levels; the timing of these can be markedly different from experiment to experiment, with cAMP and cGMP sometimes in and sometimes out of phase with each other. This pattern is observed in Helix which had been activated from the dormant state 4-6 days earlier, but is not present in dormant or in long-active animals. The cyclic nucleotide rhythm can be seen in ganglia maintained in organ culture, and persists for at least 24 hours after removal of the tissue from the animal. There appears to be little change in the level of basal or NaF-stimulated adenylate cyclase activity in Helix ganglia over the course of the day. On the other hand, both cAMP and cGMP phosphodiesterase activities exhibit rhythms which are consistent with the rhythms in cAMP and cGMP concentrations.  相似文献   

14.
The purpose of this study was to investigate the effects of NO on cytosolic calcium levels in Balb/c 3T3 fibroblasts that were previously shown to lack soluble guanylate cyclase activity. Authentic NO as well as two NO-generating vasodilators, S-nitroso-N-acetyl-penicillamine and isosorbide dinitrate, decreased cytosolic calcium in these fibroblasts. The effect of NO and S-nitroso-N-acetylpenicillamine was concentration-dependent and, for the most part, reversible. Since S-nitroso-N-acetylpenicillamine did not increase either cGMP or cAMP, NO did not increase cGMP, and 8-bromo-cGMP did not alter cytosolic free calcium, we conclude that NO decreases cytosolic free calcium by a cyclic nucleotide-independent mechanism in Balb/c 3T3 fibroblasts.  相似文献   

15.
In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs).However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system.  相似文献   

16.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

17.
Cyclic nucleotide modulation of electrolyte transport across intestinal brushborder membranes is initiated by binding of cGMP and cAMP to high-affinity receptors at the interior of the microvilli. Previously these receptors have been identified by photoaffinity-labelling techniques as regulatory domains of cGMP- and cAMP-dependent protein kinases. In the present study, the receptor concentration in isolated brushborder membrane vesicles and their fractional saturation in absorptive and secretory states of the tissue were estimated. In microvillous membrane vesicles isolated from rat small intestine in the absorptive state, about 10% of the total number of cGMP receptors (25.5 pmol/mg protein) and 40% of all cAMP receptors (28.7 pmol/mg protein) were occupied by endogenous cyclic nucleotides. Luminal exposure of the intestinal segments in vivo to heat-stable Escherichia coli toxin for 3-5 min increased the occupancy of cGMP receptors by about 5-fold without affecting receptor-bound cAMP levels. In contrast, incubation with cholera toxin for 2 h increased the fractional saturation solely of cAMP receptors by 2-fold. Addition of heat-stable E. coli toxin to cholera toxin-pretreated segments, again raising the cGMP levels by 5-fold, did not reduce the amount of receptor-bound cAMP. This finding argues against the concept that increased levels of cAMP during cholera would mimick cGMP effects on ion transport by low-affinity binding to microvillar cGMP receptors. This analysis of local changes in cyclic nucleotide levels at the microvillous level might help to explore the mechanism of action of other secretagogues or antidiarrhoeal agents and to delineate a possible compartmentation of cGMP and cAMP pools within the intestinal mucosa responding differently to external signals.  相似文献   

18.
19.
Treatment of murine peritoneal macrophages with 100 nM prostaglandin E2 (PGE2) produced a rapid biphasic increase in intracellular cAMP that was maximal at 1 min and sustained through 20 min. Pretreatment of macrophages with 100 ng/ml of lipopolysaccharide (LPS) for 60 min prior to PGE2 decreased the magnitude of cAMP elevation by 50%, accelerated the decrease of cAMP to basal levels, and abolished the sustained phase of cAMP elevation. The effect of LPS was concentration-dependent, with maximal effect at 10 ng/ml in cells incubated in the presence of 5% fetal calf serum and at 1 microgram/ml in the absence of fetal calf serum. LPS also inhibited cAMP accumulation in cells treated with 100 microM forskolin, but the decrease was about half that seen in cells treated with PGE2. LPS concentrations that inhibited cAMP accumulation produced a 30% increase in soluble low Km cAMP phosphodiesterase activity while having no effect on particulate phosphodiesterase activity. The nonspecific phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, as well as the more specific inhibitors rolipram and Ro-20-1724 were effective in inhibiting soluble phosphodiesterase activity in vitro, producing synergistic elevation of cAMP in PGE2-treated cells, and blocking the ability of LPS to inhibit accumulation of cAMP. Separation of the phosphodiesterase isoforms in the soluble fraction by DEAE chromatography indicated that LPS activated a low Km cAMP phosphodiesterase. The enzyme(s) present in this peak could be activated 6-fold by cGMP and were potently inhibited by low micromolar concentrations of Ro-20-1724 and rolipram. Using both membranes from LPS-treated cells and membranes incubated with LPS, no decrease in adenylylcyclase activity could be attributed to LPS. Although effects of LPS on the rate of synthesis of cAMP cannot be excluded, the present evidence is most consistent with a role for phosphodiesterase activation in the inhibitory effects of LPS on cAMP accumulation in murine peritoneal macrophages.  相似文献   

20.
The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3',5'-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3',5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly decreased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号