首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle training, 30 min/day, 6 days/wk for 10 wk at approximately 70% of maximal O(2) uptake) and untrained (UT) legs of healthy men (H) [n = 6, age 60 +/- 2 (SE) yr] and patients with Type 2 diabetes mellitus (DM) (n = 4, age 56 +/- 3 yr) during a hyperinsulinemic ( approximately 16,000 pmol/l), isoglycemic clamp with a final 30 min of superimposed two-legged exercise at 70% of individual maximal heart rate. With superimposed exercise, leg glucose extraction decreased (P < 0.05), and leg blood flow and leg glucose clearance increased (P < 0.05), compared with hyperinsulinemia alone. During exercise, leg blood flow was similar in both groups of subjects and between T and UT legs, whereas glucose extraction was always higher (P < 0.05) in T compared with UT legs (15.8 +/- 1.2 vs. 14.6 +/- 1.8 and 11.9 +/- 0.8 vs. 8.8 +/- 1.8% for H and DM, respectively) and leg glucose clearance was higher in T (H: 73 +/- 8, DM: 70 +/- 10 ml. min(-1). kg leg(-1)) compared with UT (H: 63 +/- 8, DM: 45 +/- 7 ml. min(-1). kg leg(-1)) but not different between groups (P > 0.05). From these results it can be concluded that, in both diabetic and healthy aged muscle, exercise adds to a maximally insulin-stimulated glucose clearance and that glucose extraction and clearance are both enhanced by training.  相似文献   

2.
A previously developed Krogh-type theoretical model was used to estimate capillary density in human skeletal muscle based on published measurements of oxygen consumption, arterial partial pressure of oxygen, and blood flow during maximal exercise. The model assumes that oxygen consumption in maximal exercise is limited by the ability of capillaries to deliver oxygen to tissue and is therefore strongly dependent on capillary density, defined as the number of capillaries per unit cross-sectional area of muscle. Based on an analysis of oxygen transport processes occurring at the microvascular level, the model allows estimation of the minimum number of straight, evenly spaced capillaries required to achieve a given oxygen consumption rate. Estimated capillary density values were determined from measurements of maximal oxygen consumption during knee extensor exercise and during whole body cycling, and they range from 459 to 1,468 capillaries/mm2. Measured capillary densities, obtained with either histochemical staining techniques or electron microscopy on quadriceps muscle biopsies from healthy subjects, are generally lower, ranging from 123 to 515 capillaries/mm2. This discrepancy is partly accounted for by the fact that capillary density decreases with muscle contraction and muscle biopsy samples typically are strongly contracted. The results imply that estimates of maximal oxygen transport rates based on capillary density values obtained from biopsy samples do not fully reflect the oxygen transport capacity of the capillaries in skeletal muscle.  相似文献   

3.
The aim of this study was to investigate local muscle O(2) consumption (muscV(O(2))) and forearm blood flow (FBF) in resting and exercising muscle by use of near-infrared spectroscopy (NIRS) and to compare the results with the global muscV(O(2)) and FBF derived from the well-established Fick method and plethysmography. muscV(O(2)) was derived from 1) NIRS using venous occlusion, 2) NIRS using arterial occlusion, and 3) the Fick method [muscV(O(2(Fick)))]. FBF was derived from 1) NIRS and 2) strain-gauge plethysmography. Twenty-six healthy subjects were tested at rest and during sustained isometric handgrip exercise. Local variations were investigated with two independent and simultaneously operating NIRS systems at two different muscles and two measurement depths. muscV(O(2)) increased more than fivefold in the active flexor digitorum superficialis muscle, and it increased 1.6 times in the brachioradialis muscle. The average increase in muscV(O(2(Fick))) was twofold. FBF increased 1.4 times independent of the muscle or the method. It is concluded that NIRS is an appropriate tool to provide information about local muscV(O(2)) and local FBF because both place and depth of the NIRS measurements reveal local differences that are not detectable by the more established, but also more global, Fick method.  相似文献   

4.
To further explore the limitations to maximal O(2) consumption (.VO(2 max)) in exercise-trained skeletal muscle, six cyclists performed graded knee-extensor exercise to maximum work rate (WR(max)) in hypoxia (12% O(2)), hyperoxia (100% O(2)), and hyperoxia + femoral arterial infusion of adenosine (ADO) at 80% WR(max). Arterial and venous blood sampling and thermodilution blood flow measurements allowed the determination of muscle O(2) delivery and O(2) consumption. At WR(max), O(2) delivery rose progressively from hypoxia (1.0 +/- 0.04 l/min) to hyperoxia (1.20 +/- 0.09 l/min) and hyperoxia + ADO (1.33 +/- 0.05 l/min). Leg .VO(2 max) varied with O(2) availability (0.81 +/- 0.05 and 0.97 +/- 0.07 l/min in hypoxia and hyperoxia, respectively) but did not improve with ADO-mediated vasodilation (0.80 +/- 0.09 l/min in hyperoxia + ADO). Although a vasodilatory reserve in the maximally working quadriceps muscle group may have been evidenced by increased leg vascular conductance after ADO infusion beyond that observed in hyperoxia (increased blood flow but no change in blood pressure), we recognize the possibility that the ADO infusion may have provoked vasodilation in nonexercising tissue of this limb. Together, these findings imply that maximally exercising skeletal muscle may maintain some vasodilatory capacity, but the lack of improvement in leg .VO(2 max) with significantly increased O(2) delivery (hyperoxia + ADO), with a degree of uncertainty as to the site of this dilation, suggests an ADO-induced mismatch between O(2) consumption and blood flow in the exercising limb.  相似文献   

5.
To elucidate the potential limitations on maximal human quadriceps O2 capacity, six subjects trained (T) one quadriceps on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). Following 5 wk of training, subjects underwent incremental knee extensor tests under normoxic (inspired O2 fraction = 21%) and hyperoxic (inspired O2 fraction = 60%) conditions with the T and UT quadriceps. Training increased quadriceps muscle mass (2.9 +/- 0.2 to 3.1 +/- 0.2 kg), but did not change fiber-type composition or capillary density. The T quadriceps performed at a greater peak power output than UT, under both normoxia (101 +/- 10 vs. 80 +/- 7 W; P < 0.05) and hyperoxia (97 +/- 11 vs. 81 +/- 7 W; P < 0.05) without further increases with hyperoxia. Similarly, thigh peak O2 consumption, blood flow, vascular conductance, and O2 delivery were greater in the T vs. the UT thigh (1.4 +/- 0.2 vs. 1.1 +/- 0.1 l/min, 8.4 +/- 0.8 vs. 7.2 +/- 0.8 l/min, 42 +/- 6 vs. 35 +/- 4 ml x min(-1) x mmHg(-1), 1.71 +/- 0.18 vs. 1.51 +/- 0.15 l/min, respectively) but were not enhanced with hyperoxia. Oxygen extraction was elevated in the T vs. the UT thigh, whereas arteriovenous O2 difference tended to be higher (78 +/- 2 vs. 72 +/- 4%, P < 0.05; 160 +/- 8 vs. 154 +/- 11 ml/l, respectively; P = 0.098) but again were unaltered with hyperoxia. In conclusion, the present results demonstrate that the increase in quadriceps muscle O2 uptake with training is largely associated with increases in blood flow and O2 delivery, with smaller contribution from increases in O2 extraction. Furthermore, the elevation in peak muscle blood flow and vascular conductance with endurance training seems to be related to an enhanced vasodilatory capacity of the vasculature perfusing the quadriceps muscle that is unaltered by moderate hyperoxia.  相似文献   

6.
To clarify the transport of O(2) across the microvessels in skeletal muscle, we designed an intravital laser microscope that utilizes a phosphorescence quenching technique to determine both the microvascular and tissue PO(2). After we injected the phosphorescent probe into systemic blood, phosphorescence excited by a N(2)-dye pulse laser was detected with a photomultiplier over a 10 microm in diameter area. In vitro and in vivo calibrations confirmed that the present method is accurate for PO(2) measurements in the range of 7-90 Torr (r = 0.958) and has a rapid response time. This method was then used to measure the PO(2) of microvessels with different diameters (40-130 microm) and of interstitial spaces in rat cremaster muscle. These measurements showed a significant drop in PO(2) in the arterioles after branching (from 74.6 to 46.6 Torr) and the presence of a large PO(2) gradient at the blood-tissue interface of arterioles (15-20 Torr). These findings suggest that capillaries are not the sole source of oxygen supply to surrounding tissue.  相似文献   

7.
Intracellular PO2 in heart and skeletal muscle   总被引:3,自引:0,他引:3  
  相似文献   

8.
The luteal phase of the female menstrual cycle is associated with both 1) elevated serum progesterone (P4) and estradiol (E2), and 2) reduced insulin sensitivity. Recently, we demonstrated a link between skeletal muscle mitochondrial H(2)O(2) emission (mE(H2O2)) and insulin resistance. To determine whether serum levels of P4 and/or E(2) are related to mitochondrial function, mE(H2O2) and respiratory O(2) flux (Jo(2)) were measured in permeabilized myofibers from insulin-sensitive (IS, n = 24) and -resistant (IR, n = 8) nonmenopausal women (IR = HOMA-IR > 3.6). Succinate-supported mE(H2O2) was more than 50% greater in the IR vs. IS women (P < 0.05). Interestingly, serum P4 correlated positively with succinate-supported mE(H2O2) (r = 0. 53, P < 0.01). To determine whether P4 or E2 directly affect mitochondrial function, saponin-permeabilized vastus lateralis myofibers biopsied from five nonmenopausal women in the early follicular phase were incubated in P4 (60 nM), E2 (1.4 nM), or both. P4 alone inhibited state 3 Jo(2), supported by multisubstrate combination (P < 0.01). However, E2 alone or in combination with P4 had no effect on Jo(2). In contrast, during state 4 respiration, supported by succinate and glycerophosphate, mE(H2O2) was increased with P4 alone or in combination with E2 (P < 0.01). The results suggest that 1) P4 increases mE(H2O2) with or without E2; 2) P4 alone inhibits Jo(2) but not when E2 is present; and 3) P4 is related to the mE(H2O2) previously linked to skeletal muscle insulin resistance.  相似文献   

9.
Rhesus monkey vastus lateralis muscle was examined histologically for age-associated electron transport system (ETS) abnormalities: fibers lacking cytochrome c oxidase activity (COX(-)) and/or exhibiting succinate dehydrogenase hyperreactivity (SDH(++)). Two hundred serial cross-sections (spanning 1600 microm) were obtained and analyzed for ETS abnormalities at regular intervals. The abundance and length of ETS abnormal regions increased with age. Extrapolating the data to the entire length of the fiber, up to 60% of the fibers were estimated to display ETS abnormalities in the oldest animal studied (34 years) compared to 4% in a young adult animal (11 years). ETS abnormal phenotypes varied with age and fiber type. Middle-aged animals primarily exhibited the COX(-) phenotype, while COX(-)/SDH(++) abnormalities were more common in old animals. Transition region phenotype was affected by fiber type with type 2 fibers first displaying COX(-) and then COX(-)/SDH(++) while type 1 fibers progressed from normal to SDH(++) and then to COX(-)/SDH(++). In situ hybridizations studies revealed an association of ETS abnormalities with deletions of the mitochondrial genome. By measuring cross-sectional area along the length of ETS abnormal fibers, we demonstrated that some of these fibers exhibit atrophy. Our data suggest mitochondrial (mtDNA) deletions and associated ETS abnormalities are contributors to age-associated fiber atrophy.  相似文献   

10.
H Iwamoto 《Biophysical journal》1998,74(3):1452-1464
The mechanism underlying the calcium sensitivity of the velocity of shortening of skeletal muscle fibers was investigated using a multiple shortening protocol: within a single contraction, skinned rabbit psoas fibers were made to shorten repetitively under a light load by briefly stretching back to their initial length at regular intervals. At saturating [Ca2+], the initial fast shortening pattern was repeated reproducibly. At submaximal [Ca2+], the first shortening consisted of fast and slow phases, but only the slow phase was observed in later shortenings. When the fibers were held isometric after the first shortening, the velocity of the second shortening recovered with time. The recovery paralleled tension redevelopment, implying a close relationship between the velocity and the number of the preexisting force-producing cross-bridges. However, this parallelism was lost as [Ca2+] was increased. Thus, the velocity was modified in a manner consistent with the cooperative thin filament activation by strong binding cross-bridges and its modulation by calcium. The present results therefore provide evidence that the thin filament cooperativity is primarily responsible for the calcium sensitivity of velocity. The effect of inorganic phosphate to accelerate the slow phase of shortening is also explained in terms of the cooperative activation.  相似文献   

11.
An ischemic canine limb model was used to determine whether endotoxin reduces the ability of resting skeletal muscle to extract O2 and whether increasing the arterial PO2 would increase its O2 extraction. Isolated limbs were pump perfused via an extracorporeal circuit with membrane oxygenator at three progressively lower flows and PO2 of both 60 and 200 Torr, whereas the rest of the body remained normoxic and normotensive. Six anesthetized, paralyzed dogs were injected with endotoxin (4 mg/kg, ENDO), and another six were controls (CONT). Limb critical O2 delivery was higher (P less than 0.05) in ENDO than CONT (8.3 vs. 6.1 ml.kg-1.min-1). Critical venous PO2 was also higher (P less than 0.05) in ENDO than CONT (38 vs. 30 Torr). Critical O2 extraction ratio was lower (P less than 0.05) in ENDO than CONT (0.60 vs. 0.73). There were no differences in these variables between low and high arterial PO2. We concluded that 1) endotoxin can cause a small but significant O2 extraction defect in skeletal muscle, 2) increasing arterial PO2 did not correct such a defect, nor did it improve O2 uptake in ischemic, but otherwise healthy, muscle, and 3) skeletal muscle may contribute to the peripheral O2 extraction defect in adult respiratory distress syndrome insofar as endotoxin effects model those found in adult respiratory distress syndrome.  相似文献   

12.
The present work was aimed at measuring intramuscular oxygen consumption (O(2)) as a function of temperature (T), in human forearm, during rest and aerobic isometric exercise (4% of the maximal voluntary contraction, MVC). Based upon results from in vitro experiments performed on isolated mitochondria of animal species, it was hypothesised that, during isometric exercise, the O(2)-T curve should display a maximum for some 'optimal' T. Intramuscular T and measurements were performed using a combined deep body temperature/near infrared probe during muscle cooling. At rest, O(2) increased non-linearly and monotonically as a function of T (n=8). O(2) increased approximately 2 times when going from 26 to 36 degrees C. A log(O(2))-T plot or a log(O(2))-1/T did not linearise the data. During isometric contraction, O(2) values at 26.8+/-0.6, 28.6+/-0.9, 31.9+/-0.9 and 35.9+/-0.9 degrees C were 3.04+/-1.26, 7.60+/-1.64, 4.43+/-1.95, and 6.64+/-1.37 micromol 100 g(-1) min(-1), respectively (n=6). The O(2) value at 28.6 degrees C was significantly higher (P<0.05) than that at 26.8 and 31.9 degrees C. The 'sudden' O(2) change at 28.6 degrees C is compatible with the phenomenon observed at the mitochondrial level.  相似文献   

13.
Food restriction is the most effective modulator of oxidative stress and it is believed that a reduction in caloric intake per se is responsible for the reduced generation of reactive oxygen species (ROS) by mitochondria. Hydrogen peroxide (H(2)O(2)) generation and oxygen consumption (O(2)) by skeletal muscle mitochondria were determined in a peculiar strain of rats (Lou/C) characterized by a self-low-caloric intake and a dietary preference for fat. These rats were fed either with a standard high-carbohydrate (HC) or a high-fat (HF) diet and the results were compared to those measured in Wistar rats fed a HC diet. H(2)O(2) production was significantly reduced in Lou/C rats fed a HC diet; this effect was not due to a lower O(2) consumption but rather to a decrease in rotenone-sensitive NADH-ubiquinone oxidoreductase activity and increased expression of uncoupling proteins 2 and 3. The reduced H(2)O(2) generation displayed by Lou/C rats was accompanied by a significant inhibition of permeability transition pore (PTP) opening. H(2)O(2) production was restored and PTP inhibition was relieved when Lou/C rats were allowed to eat a HF diet, suggesting that the reduced oxidative stress provided by low caloric intake is lost when fat proportion in the diet is increased.  相似文献   

14.
It remainscontroversial whether lactate formation during progressive dynamicexercise from submaximal to maximal effort is due to muscle hypoxia. Tostudy this question, we used direct measures of arterial and femoralvenous lactate concentration, a thermodilution blood flow technique,phosphorus magnetic resonance spectroscopy (MRS), and myoglobin (Mb)saturation measured by 1H nuclearMRS in six trained subjects performing single-leg quadriceps exercise.We calculated net lactate efflux from the muscle and intracellularPO2 with subjects breathing room airand 12% O2. Data were obtained at50, 75, 90, and 100% of quadriceps maximalO2 consumption at each fraction ofinspired O2. Mb saturation wassignificantly lower in hypoxia than in normoxia [40 ± 3 vs. 49 ± 3% (SE)] throughout incremental exercise to maximalwork rate. With the assumption of aPO2 at which 50% of Mb-binding sitesare bound with O2 of 3.2 Torr,Mb-associated PO2 averaged 3.1 ± 0.3 and 2.3 ± 0.2 Torr in normoxia and hypoxia, respectively. Netblood lactate efflux was unrelated to intracellular PO2 across the range of incrementalexercise to maximum (r = 0.03 and 0.07 in normoxia and hypoxia, respectively) but linearly related toO2 consumption(r = 0.97 and 0.99 in normoxia andhypoxia, respectively) with a greater slope in 12%O2. Net lactate efflux was alsolinearly related to intracellular pH(r = 0.94 and 0.98 in normoxia andhypoxia, respectively). These data suggest that with increasing workrate, at a given fraction of inspiredO2, lactate efflux is unrelated tomuscle cytoplasmic PO2, yet theefflux is higher in hypoxia. Catecholamine values from comparablestudies are included and indicate that lactate efflux in hypoxia may bedue to systemic rather than intracellular hypoxia.

  相似文献   

15.
16.
Indirect determination of maximal O2 consumption in man   总被引:8,自引:0,他引:8  
  相似文献   

17.
It remains uncertain whether the delayed onset of mitochondrial respiration on initiation of muscle contractions is related to O(2) availability. The purpose of this research was to measure the kinetics of the fall in intracellular PO(2) at the onset of a contractile work period in rested and previously worked single skeletal muscle fibers. Intact single skeletal muscle fibers (n = 11) from Xenopus laevis were dissected from the lumbrical muscle, injected with an O(2)-sensitive probe, mounted in a glass chamber, and perfused with Ringer solution (PO(2) = 32 +/- 4 Torr and pH = 7.0) at 20 degrees C. Intracellular PO(2) was measured in each fiber during a protocol consisting sequentially of 1-min rest; 3 min of tetanic contractions (1 contraction/2 s); 5-min rest; and, finally, a second 3-min contractile period identical to the first. Maximal force development and the fall in force (to 83 +/- 2 vs. 86 +/- 3% of maximal force development) in contractile periods 1 and 2, respectively, were not significantly different. The time delay (time before intracellular PO(2) began to decrease after the onset of contractions) was significantly greater (P < 0.01) in the first contractile period (13 +/- 3 s) compared with the second (5 +/- 2 s), as was the time to reach 50% of the contractile steady-state intracellular PO(2) (28 +/- 5 vs. 18 +/- 4 s, respectively). In Xenopus single skeletal muscle fibers, 1) the lengthy response time for the fall in intracellular PO(2) at the onset of contractions suggests that intracellular factors other than O(2) availability determine the on-kinetics of oxidative phosphorylation and 2) a prior contractile period results in more rapid on-kinetics.  相似文献   

18.
This study investigated whether fatiguing dynamic exercise depresses maximal in vitro Na(+)-K(+)-ATPase activity and whether any depression is attenuated with chronic training. Eight untrained (UT), eight resistance-trained (RT), and eight endurance-trained (ET) subjects performed a quadriceps fatigue test, comprising 50 maximal isokinetic contractions (180 degrees /s, 0.5 Hz). Muscle biopsies (vastus lateralis) were taken before and immediately after exercise and were analyzed for maximal in vitro Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluoroscein phosphatase) activity. Resting samples were analyzed for [(3)H]ouabain binding site content, which was 16.6 and 18.3% higher (P < 0.05) in ET than RT and UT, respectively (UT 311 +/- 41, RT 302 +/- 52, ET 357 +/- 29 pmol/g wet wt). 3-O-methylfluoroscein phosphatase activity was depressed at fatigue by -13.8 +/- 4.1% (P < 0.05), with no differences between groups (UT -13 +/- 4, RT -9 +/- 6, ET -22 +/- 6%). During incremental exercise, ET had a lower ratio of rise in plasma K(+) concentration to work than UT (P < 0.05) and tended (P = 0.09) to be lower than RT (UT 18.5 +/- 2.3, RT 16.2 +/- 2.2, ET 11.8 +/- 0.4 nmol. l(-1). J(-1)). In conclusion, maximal in vitro Na(+)-K(+)-ATPase activity was depressed with fatigue, regardless of training state, suggesting that this may be an important determinant of fatigue.  相似文献   

19.
20.
The purpose of this study was to examine the development of fatigue in isolated, single skeletal muscle fibers when O2 availability was reduced but not to levels considered rate limiting to mitochondrial respiration. Tetanic force was measured in single living muscle fibers (n = 6) from Xenopus laevis while being stimulated at increasing contraction rates (0.25, 0.33, 0.5, and 1 Hz) in a sequential manner, with each stimulation frequency lasting 2 min. Muscle fatigue (determined as 75% of initial maximum force) was measured during three separate work bouts (with 45 min of rest between) as the perfusate PO2 was switched between values of 30 +/- 1.9, 76 +/- 3.0, or 159 Torr in a blocked-order design. No significant differences were found in the initial peak tensions between the high-, intermediate-, and low-PO2 treatments (323 +/- 22, 298 +/- 27, and 331 +/- 24 kPa, respectively). The time to fatigue was reached significantly sooner (P < 0.05) during the 30-Torr treatment (233 +/- 39 s) compared with the 76- (385 +/- 62 s) or 159-Torr (416 +/- 65 s) treatments. The calculated critical extracellular PO2 necessary to develop an anoxic core within these fibers was 13 +/- 1 Torr, indicating that the extracellular PO2 of 30 Torr should not have been rate limiting to mitochondrial respiration. The magnitude of an unstirred layer (243 +/- 64 micron) or an intracellular O2 diffusion coefficient (0.45 +/- 0.04 x 10(-5) cm2/s) necessary to develop an anoxic core under the conditions of the study was unlikely. The earlier initiation of fatigue during the lowest extracellular PO2 condition, at physiologically high intracellular PO2 levels, suggests that muscle performance may be O2 dependent even when mitochondrial respiration is not necessarily compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号