共查询到20条相似文献,搜索用时 15 毫秒
1.
Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli. 总被引:1,自引:1,他引:1 下载免费PDF全文
Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane. 相似文献
2.
The ynfEFGHI operon is a paralogue of the Escherichia coli dmsABC operon. ynfE and ynfF are paralogues of dmsA. ynfG and ynfH are paralogues of dmsB and dmsC, respectively. YnfI (dmsD) has no dms paralogue. YnfE/F and YnfG could be detected by immunoblotting with anti-DmsAB antibodies when expressed under the control of a tac or dms promoter. Cells harbouring ynfFGH on a multicopy plasmid supported anaerobic growth with dimethyl sulfoxide (DMSO) as respiratory oxidant in a dmsABC deletion, suggesting that YnfFGH forms a heterotimeric enzyme complex similar to DmsABC. Exchange of DmsC by YnfH (DmsAB-YnfH) resulted in membrane localization, anaerobic growth on DMSO, and binding of 2-n-heptyl 4-hydroxyquinoline-N-oxide, indicating that YnfH was a competent anchor. YnfG can also replace DmsB as the electron transfer subunit and assembled [Fe-S] clusters as judged by electron paramagnetic resonance spectroscopy. YnfE and/or YnfF could not form a functional complex with DmsBC and expression of YnfE prevented the accumulation of YnfFGH. 相似文献
3.
The purE operon of Escherichia coli has been cloned and localized to a 1.7-kb HpaI fragment. The operon has been further characterized by subcloning into the lac fusion vector, pMC1403, and by the construction of BAL 31-generated deletions. The purE regulation region has been identified by assay of beta-galactosidase produced by pur-lac fusion plasmids and by RNA polymerase binding to end-labelled restriction fragments. Two purE promoters have been identified; one strong that is regulated by purines, the other weaker which is not regulated. The latter may be internal to the purE1 structural gene. 相似文献
4.
Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli 总被引:5,自引:0,他引:5
The electron transfer centers in dimethyl sulfoxide reductase were examined by EPR spectroscopy in membranes of the overproducing Escherichia coli strain HB101/pDMS159, and in purified enzyme. Iron-sulfur clusters of the [4Fe-4S] type and a molybdenum center were detected in the protein, which comprises three different subunits: DmsA, -B, and -C. The intensity of the reduced iron-sulfur clusters corresponded to 3.82 +/- 0.5 spins per molecule. The dithionite-reduced clusters were reoxidized by DMSO or TMAO. The enzyme, as prepared, showed a spectrum of Mo(V), which resembles the high-pH form of E. coli nitrate reductase. The Mo(V) detected by EPR was absent from a mutant which does not assemble the molybdenum cofactor. In these cases, the levels of EPR-detectable iron-sulfur clusters in the cells were increased. Extracts from HB101/pDMS159 enriched in DmsA showed more Mo(V) signals and considerably less iron-sulfur. These results are in agreement with predictions from amino acid sequence comparisons, that the molybdenum center is located in DmsA, while four iron-sulfur clusters are in DmsB. The midpoint potentials of the molybdenum and iron-sulfur clusters in the various preparations were determined by mediator titrations. The iron-sulfur signals could be best fitted by four clusters, with midpoint potentials spread between -50 and -330 mV. The midpoint potentials of the iron-sulfur clusters and Mo(V) species were pH dependent. In addition, all potentials became less negative in the presence of the detergent Triton X-100. Observation of relaxation enhancement of the Mo(V) species by the reduced [4Fe-4S] clusters indicated that the centers are in proximity within the protein. 相似文献
5.
We have used site-directed mutagenesis to alter the [Fe-S] cluster composition of Escherichia coli dimethyl sulfoxide (DMSO) reductase (DmsABC). The electron-transfer subunit (DmsB) of this enzyme contains 16 Cys residues arranged in 4 groups (I-IV) which provide ligands to 4 [4Fe-4S] clusters [Cammack, R., & Weiner, J. H. (1990) Biochemistry 29, 8410-8416]. Strong homologies exist between these Cys groups and the four Cys groups of the electron-transfer subunit (NarH) of E. coli nitrate reductase (NarGHJI), which contains a [3Fe-4S] cluster in addition to multiple [4Fe-4S] clusters. The Cys group primarily involved in providing ligands to the [3Fe-4S] cluster of NarH has a Trp residue at a position equivalent to Cys102 of DmsB. We have mutated Cys102 to Trp, Ser, Tyr, and Phe and have investigated the altered enzymes in terms of their enzymatic activities and EPR properties. The mutant enzymes do not support electron transfer from menaquinol to DMSO, although they retain high rates of electron transport from reduced benzyl viologen to DMSO. The mutations cause major changes in the EPR properties of the enzyme in the fully reduced and oxidized states. In the oxidized state, new species are observed in all the mutants; these have spectral features comprising a peak at g = 2.03 (gz) and a peak-trough at g = 2.00 (gxy). The temperature dependencies, microwave power dependencies, and spin quantitations of these species are consistent with the Trp102, Ser102, Phe102, and Tyr102 mutations causing conversion of one of the [4Fe-4S] clusters present in the wild-type enzyme into [3Fe-4S] clusters in the mutant enzymes. 相似文献
6.
7.
The polyhydroxyalkanoate synthesis operon was cloned from Aeromonas hydrophila CGMCC 0911. Heterogeneous expression of the cloned polyhydroxyalkanoate synthesis operon in Escherichia coli resulted in accumulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) consisting of 13.9 mol % 3-hydroxyhexanoate up to 29.2 wt % of cell dry weight when grown in lauric acid. The cell dry weight of recombinant E. coli harboring the polyhydroxyalkanoate synthesis operon was improved to 1.7 g L (-1), which was much higher than that of 0.3 g L (-1) of the wild type E. coli. Coexpression of acyl-CoA dehydrogenase gene (yafH) from E. coli and Vitreoscilla hemoglobin gene (vgb) from Vitreoscilla together with the whole A. hydrophila CGMCC 0911 polyhydroxyalkanoate synthesis operon facilitated cell growth and polyhydroxyalkanoate accumulation in E. coli. When yafH was coexpressed together with the polyhydroxyalkanoate synthesis operon, the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) content was increased from 29.2 to 52.1 wt %, and the cell dry weight was also increased slightly from 1.70 to 1.86 g L (-1). Coexpression of vgb gene could further enhance the cell dry weight to 2.0 g L(-1) and the polyhydroxyalkanoate content to 60.7 wt %. 相似文献
8.
Sambasivarao D Turner RJ Simala-Grant JL Shaw G Hu J Weiner JH 《The Journal of biological chemistry》2000,275(29):22526-22531
Dimethyl sulfoxide (Me(2)SO) reductase of Escherichia coli is a terminal electron transport chain enzyme that is expressed under anaerobic growth conditions and is required for anaerobic growth with Me(2)SO as the terminal electron acceptor. The trimeric enzyme is composed of a membrane extrinsic catalytic dimer (DmsAB) and a membrane intrinsic anchor (DmsC). The amino terminus of DmsA has a leader sequence with a twin arginine motif that targets DmsAB to the membrane via a novel Sec-independent mechanism termed MTT for membrane targeting and translocation. We demonstrate that the Met-1 present upstream of the twin arginine motif serves as the correct translational start site. The leader is essential for the expression of DmsA, stability of the DmsAB dimer, and membrane targeting of the reductase holoenzyme. Mutation of arginine 17 to aspartate abolished membrane targeting. The reductase was labile in the leader sequence mutants. These mutants failed to support growth on glycerol-Me(2)SO minimal medium. Replacing the DmsA leader with the TorA leader of trimethylamine N-oxide reductase produced a membrane-bound DmsABC with greatly reduced enzyme activity and inefficient anaerobic respiration indicating that the twin arginine leaders may play specific roles in the assembly of redox enzymes. 相似文献
9.
M A Rahman N Brot H Weissbach 《Cellular and molecular biology, including cyto-enzymology》1992,38(5):529-542
The enzyme peptide methionine sulfoxide reductase catalyzes the conversion of methionine sulfoxide residues in proteins to methionine. The 636 nucleotide coding region of the peptide methionine sulfoxide reductase gene has been amplified from a genomic clone using the polymerase chain reaction and the product was subcloned into plasmid pGEX-2T downstream of the glutathione S-transferase gene under control of the tac promoter. Escherichia coli XL1-Blue cells transformed with this plasmid and induced with isopropylthio-beta-galactoside expressed high levels of the fusion protein. The protein was soluble and was purified to homogeneity by affinity binding to a glutathione-agarose resin followed by cleavage of the fusion protein with thrombin. Both the fusion protein and the purified peptide methionine sulfoxide reductase protein showed high peptide methionine sulfoxide reductase activity. 相似文献
10.
Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. 总被引:5,自引:11,他引:5 下载免费PDF全文
Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange chromatography. The purified enzyme was composed of three subunits with molecular weights of 82,600, 23,600, and 22,700 as identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was determined by gel electrophoresis to be 155,000. The purified enzyme contained 7.5 atoms of iron and 0.34 atom of molybdenum per mol of enzyme. The presence of molybdopterin cofactor in dimethyl sulfoxide reductase was identified by reconstitution of cofactor-deficient NADPH nitrate reductase activity from Neurospora crassa nit-I mutant and by UV absorption and fluorescence emission spectra. The enzyme displayed a very broad substrate specificity, reducing various N-oxide and sulfoxide compounds as well as chlorate and hydroxylamine. 相似文献
11.
The phoP-phoQ operon of Salmonella typhimurium is a member of the family of two-component regulatory systems and controls expression of the phoN gene that codes for nonspecific acid phosphatase and the genes involved in the pathogenicity of the bacterium. The phoP-phoQ operon of Escherichia coli was cloned on a plasmid vector by complementation of a phoP mutant, and the 4.1-kb nucleotide sequence, which includes the phoP-phoQ operon and its flanking regions, was determined. The phoP-phoQ operon was mapped at 25 min on the standard E. coli linkage map by hybridization with the Kohara mini set library of the E. coli chromosome (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). The predicted phoP and phoQ gene products consist of 223 and 486 amino acids with estimated molecular masses of 25,534 and 55,297 Da, respectively, which correspond well with the sizes of the PhoP and PhoQ proteins identified by the maxicell method. The amino acid sequences of PhoP and PhoQ of E. coli were 93 and 86% identical, respectively, to those of S. typhimurium. 相似文献
12.
M A Rahman H Nelson H Weissbach N Brot 《The Journal of biological chemistry》1992,267(22):15549-15551
The gene encoding peptide methionine sulfoxide reductase was cloned from an Escherichia coli genomic library using an oligonucleotide probe based on the amino-terminal sequence of the protein. The nucleotide sequence revealed that the gene codes for a polypeptide of 212 amino acid residues with a calculated molecular weight of 23,314. The protein has been overexpressed in E. coli and is present as a soluble active species. 相似文献
13.
H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. 总被引:1,自引:0,他引:1 下载免费PDF全文
Anaerobically grown Escherichia coli cells were shown to acidify the reaction medium in response to oxygen or dimethyl sulfoxide (DMSO) pulses, with the H+/e- stoichiometry being close to 2.5 and 1.5, respectively. In the presence of the NADH dehydrogenase I (NDH-I) inhibitor 8-methyl-N-vanillyl-6-nonenamide (capsaicin) or in mutants lacking NDH-I, this ratio decreased to 1 for O2 and to 0 for DMSO. These data suggest that (i) the H+/e- stoichiometry for E. coli NDH-I is at least 1.5 and (ii) the DMSO reductase does not generate a proton motive force. 相似文献
14.
A gene responsible for increased synthesis of hexaheme nitrite reductase (cytochrome c552) of Escherichia coli K-12 was cloned into pBR322 by the direct immunological screening method using antiserum against the purified enzyme. The cloned gene was mapped at 5 min on the chromosomal linkage map as the dni gene (related to increased synthesis of the dissimilatory nitrite reductase) by conjugation and transduction. The dni gene was subcloned into pUC118 and was shown to be on a 2.6-kilobase-pair PstI-BamHI fragment by immunoblotting analysis of the expressed enzyme. The nucleotide sequence of this fragment was determined. A plausible open-reading frame corresponding to 222 amino acids was detected. Analysis of a dni deletion mutant by immunoblotting demonstrated that this mutant expressed a greatly reduced amount of the nitrite reductase. Thus, the dni gene is suggested to have a positive regulatory action on induced synthesis of the nitrite reductase, and was designated as dniR. 相似文献
15.
Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase. 总被引:7,自引:1,他引:7 下载免费PDF全文
The D-xylose isomerase (EC 5.3.1.5) gene from Escherichia coli was cloned and isolated by complementation of an isomerase-deficient E. coli strain. The insert containing the gene was restriction mapped and further subcloning located the gene in a 1.6-kb Bg/II fragment. This fragment was sequenced by the chain termination method, and showed the gene to be 1002 bp in size. The Bg/II fragment was cloned into a yeast expression vector utilising the CYCl yeast promoter. This construct allowed expression in E. coli grown on xylose but not glucose suggesting that the yeast promoter is responding to the E. coli catabolite repression system. No expression was detected in yeast from this construct and this is discussed in terms of the upstream region in the E. coli insert with suggestions of how improved constructs may permit achievement of the goal of a xylose-fermenting yeast. 相似文献
16.
An amperometric dimethyl sulfoxide (DMSO) sensor was constructed based on DMSO reductase (DMSO-R). DMSO-R from Rhodobacter sphaeroides f. sp. denitrificans was immobilized by BSA-glutaraldehyde cross-linking at the surface of a glassy carbon electrode. Mediators were added to the sample solution in a free form. Several mediators (methyl viologen (MV), benzyl viologen (BV), neutral red (NR), safranin T (ST), FMN, phenazine methosulfate (PMS)), which can donate electrons to DMSO-R, were examined with the DMSO-R immobilized electrode. Among them MV was selected as a model mediator because of its wide linear response range and fast response time. The response current was effected by the measurement temperature but hardly effected by the pH of the sample solution. The response current was increased with the measurement temperature up to 50 degrees C. A response current was observed at 1 microM DMSO and the response time was 20 s under the optimum conditions. The response was observed for approximately 2 weeks. By the reduction of Schiff base in the cross-linking layer the response range became narrower but most of the response current was retained at 300 microM of DMSO for more than 5 weeks. 相似文献
17.
Association of molybdopterin guanine dinucleotide with Escherichia coli dimethyl sulfoxide reductase: effect of tungstate and a mob mutation. 下载免费PDF全文
R A Rothery J L Grant J L Johnson K V Rajagopalan J H Weiner 《Journal of bacteriology》1995,177(8):2057-2063
We have identified the organic component of the molybdenum cofactor in Escherichia coli dimethyl sulfoxide reductase (DmsABC) to be molybdopterin (MPT) guanine dinucleotide (MGD) and have studied the effects of tungstate and a mob mutation on cofactor (Mo-MGD) insertion. Tungstate severely inhibits anaerobic growth of E. coli on a glycerol-dimethyl sulfoxide minimal medium, and this inhibition is partially overcome by overexpression of DmsABC. Isolation and characterization of an oxidized derivative of MGD (form A) from DmsABC overexpressed in cells grown in the presence of molybdate or tungstate indicate that tungstate inhibits insertion of Mo-MGD. No electron paramagnetic resonance evidence for the assembly of tungsten into DmsABC was found between Eh = -450 mV and Eh = +200 mV. The E. coli mob locus is responsible for the addition of a guanine nucleotide to molybdo-MPT (Mo-MPT) to form Mo-MGD. DmsABC does not bind Mo-MPT or Mo-MGD in a mob mutant, indicating that nucleotide addition must precede cofactor insertion. No electron paramagnetic resonance evidence for the assembly of molybdenum into DmsABC in a mob mutant was found between Eh = -450 mV and Eh = +200 mV. These data support a model for Mo-MGD biosynthesis and assembly into DmsABC in which both metal chelation and nucleotide addition to MPT precede cofactor insertion. 相似文献
18.
Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA). 总被引:4,自引:0,他引:4
L Kuschel A Hansel R Sch?nherr H Weissbach N Brot T Hoshi S H Heinemann 《FEBS letters》1999,456(1):17-21
Oxidation of methionine residues in proteins to methionine sulfoxide can be reversed by the enzyme peptide methionine sulfoxide reductase (MsrA, EC 1.8.4.6). We cloned the gene encoding a human homologue (hMsrA) of the enzyme, which has an 88% amino acid sequence identity to the bovine version (bMsrA). With dot blot analyses based on RNA from human tissues, expression of hMsrA was found in all tissues tested, with highest mRNA levels in adult kidney and cerebellum, followed by liver, heart ventricles, bone marrow and hippocampus. In fetal tissue, expression was highest in the liver. No expression of hmsrA was detected in leukemia and lymphoma cell lines. To test if hMsrA is functional in cells, we assayed its effect on the inactivation time course of the A-type potassium channel ShC/B since this channel property strongly depends on the oxidative state of a methionine residue in the N-terminal part of the polypeptide. Co-expression of ShC/B and hMsrA in Xenopus oocytes significantly accelerated inactivation, showing that the cloned enzyme is functional in an in vivo assay system. Furthermore, the activity of a purified glutathione-S-transferase-hMsrA fusion protein was demonstrated in vitro by measuring the reduction of [3H]N-acetyl methionine sulfoxide. 相似文献
19.
J P Brakenhoff E R de Groot R F Evers H Pannekoek L A Aarden 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(12):4116-4121
Human monocytes produce a factor that supports the growth of B lymphocyte hybridoma cells, termed hybridoma growth factor (HGF). By using expression cloning in Escherichia coli of complementary DNA derived from human monocyte-poly(A+) RNA, we selected seven clones producing HGF activity as measured in a bioassay, based on the induction of proliferation of the HGF-dependent B cell hybridoma B9. Sequence analysis of the cDNA revealed that HGF is identical with interferon-beta 2, 26,000 protein, and B cell stimulatory factor-2. One of the active clones contained a cDNA that encoded a recombinant product lacking the 28-amino acid long signal peptide and the first 15 amino acids of the mature protein. Antibodies against the recombinant HGF inhibited the biologic activity of recombinant HGF as well as of monocyte-derived HGF. 相似文献
20.
A 6.1-kb EcoRI DNA fragment containing the four structural genes (deoC, deoA, deoB, deoD) of the deoxyribonucleoside operon has been cloned into the plasmid pMFS53. By use of a unique, asymmetrically positioned HindIII site on the 6.1 kb insert, plasmids containing the deoC,deoA genes (pMFS50) or the deoB,deoD genes (pMFS55) have been constructed. Enzyme assays performed on extracts prepared from clones harboring pMFS53, pMFS50 or pMFS55 revealed that each clone possessed amplified deo enzyme levels and that the spectrum of enzyme amplification corresponded to the genetic composition of the plasmids carried by each clone. A plasmid (pMFS50l) having functional deoA, deoB and deoD genes but devoid of the deo regulatory region and a portion of the deoC structural gene has been isolated following treatment of BamHI cleaved pMFS53 and BAL31 nuclease. Comparison of the deo enzyme levels for clones harboring pMFS53 and pMFS501 suggest that plasmid pMFS53 possesses a functional deo regulatory region in addition to the four structural genes of the operon. 相似文献