首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recombination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepatocellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepatocarcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E.coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chromatography in an FPLC system. The analysis using isotope α-32p-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.  相似文献   

2.
3.
The herpes simplex virus type 1 (HSV-1) UL8 DNA replication protein is a component of a trimeric helicase-primase complex. Sixteen UL8-specific monoclonal antibodies (MAbs) were isolated and characterized. In initial immunoprecipitation experiments, one of these, MAb 804, was shown to coprecipitate POL, the catalytic subunit of the HSV-1 DNA polymerase, from extracts of insect cells infected with recombinant baculoviruses expressing the POL and UL8 proteins. Coprecipitation of POL was dependent on the presence of UL8 protein. Rapid enzyme-linked immunosorbent assays (ELISAs), in which one protein was bound to microtiter wells and binding of the other protein was detected with a UL8- or POL-specific MAb, were developed to investigate further the interaction between the two proteins. When tested in the ELISAs, five of the UL8-specific MAbs consistently inhibited the interaction, raising the possibility that these antibodies act by binding to epitopes at or near a site(s) on UL8 involved in its interaction with POL. The epitopes recognized by four of the inhibitory MAbs were approximately located by using a series of truncated UL8 proteins expressed in mammalian cells. Three of these MAbs recognized an epitope near the C terminus of UL8, which was subjected to fine mapping with a series of overlapping peptides. The C-terminal peptides were then tested in the ELISA for their ability to inhibit the POL-UL8 interaction: the most potent exhibited a 50% inhibitory concentration of approximately 5 microM. Our findings suggest that the UL8 protein may be involved in recruiting HSV-1 DNA polymerase into the viral DNA replication complex and also identify a potential new target for antiviral therapy.  相似文献   

4.
DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recom-bination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepato-cellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepato-carcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E. coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chro-matography in an FPLC system. The analysis using isotope α-32P-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.  相似文献   

5.
Biochemical characterization of the herpes simplex virus (HSV) DNA polymerase, a model DNA polymerase and an important target for antiviral drugs, has been limited by a lack of pure enzyme in sufficient quantity. To overcome this limitation, the HSV DNA polymerase gene was introduced into the baculovirus, Autographa californica nuclear polyhedrosis virus, under the control of the polyhedrin promoter to give rise to a recombinant baculovirus, BP58. BP58-infected Spodoptera frugiperda insect cells expressed a polypeptide that was indistinguishable from authentic polymerase by several immunological and biochemical properties, at levels approximately ten-fold higher per infected cell than found in HSV-infected Vero cells. The DNA polymerase was purified to apparent homogeneity from BP58-infected insect cells. Using activated DNA as primer-template, the purified enzyme exhibited specific activity similar to that of enzyme isolated from HSV-infected Vero cells, indicating that additional polymerase-associated proteins from HSV-infected cells are not critical for activity with this primer-template. 3'-5' exonuclease activity co-purified with the BP58-expressed HSV DNA polymerase, demonstrating that this activity is intrinsic to the polymerase polypeptide. The purified enzyme also exhibited RNAse H activity. The recombinant baculovirus should permit detailed biochemical and biophysical studies of this enzyme.  相似文献   

6.
The human DNA polymerase alpha catalytic polypeptide has been functionally overexpressed by a recombinant baculovirus in insect cells at greater than 1000-fold higher levels than that found in cultured normal human cells. The recombinant polymerase alpha protein is translated from its natural translation start codon under the control of the baculovirus polyhedron promoter producing a protein of 180 kDa, identical in size to that isolated from cultured human cells. This recombinant polymerase alpha is phosphorylated and reactive to a panel of monoclonal antibodies directed against the native polymerase alpha-primase complex and to polyclonal antisera against N- and C-terminal peptides of the polymerase alpha catalytic polypeptide. The recombinant enzyme was immunopurified from insect cells as a single polypeptide. The single subunit recombinant polymerase alpha has no detectable 3'-5' exonuclease activity. The Km for primer-template and dNTP, reactivity to inhibitors, N2-(p-n-butylphenyl)-dGTP (BuPdGTP) and aphidicolin, thermosensitivity, and DNA synthetic processivity and fidelity of the recombinant polymerase alpha are identical to that observed with the four-subunit polymerase alpha-primase complex immunopurified from cultured human cells. These results strongly suggest that the presence of the other subunits, (the p70 and the two primase subunits, p48 and p58), does not influence kinetic parameters of polymerase alpha catalysis, sensitivity to inhibitors, or DNA synthetic fidelity and processivity.  相似文献   

7.
A recombinant baculovirus containing the complete sequence for the Epstein-Barr virus (EBV) DNA polymerase catalytic subunit, BALF5 gene product, under the control of the baculovirus polyhedrin promoter was constructed. Insect cells infected with the recombinant virus produced a protein of 110 kDa, recognized by anti-BALF5 protein-specific polyclonal antibody. The expressed EBV DNA polymerase catalytic polypeptide was purified from the cytosolic fraction of the recombinant virus-infected insect cells. The purified protein exhibited both DNA polymerase and 3'-to-5' exonuclease activities, which were neutralized by the anti-BALF5 protein-specific antibody. These results indicate that the 3'-to-5' exonuclease activity associated with the EBV DNA polymerase (T. Tsurumi, Virology 182:376-381, 1991) is an inherent feature of the polymerase catalytic polypeptide. The DNA polymerase and the exonuclease activities of the EBV DNA polymerase catalytic subunit were sensitive to ammonium sulfate in contrast to those of the polymerase complex purified from EBV-producing lymphoblastoid cells, which were stimulated by salt. Furthermore, the template-primer preference for the polymerase catalytic subunit was different from that for the polymerase complex. These observations strongly suggest that the presence of EBV DNA polymerase accessory protein, BMRF1 gene product, does influence the enzymatic properties of EBV DNA polymerase catalytic subunit.  相似文献   

8.
Syk is a tyrosine kinase which is indispensable in immunoglobulin Fc receptor- and B cell receptor-mediated signal transduction in various immune cells. This pathway is important in the pathophysiology of allergy. In this study we established a quantitative nonradioactive kinase assay to identify inhibitors of Syk. We used recombinant GST-tagged Syk purified from baculovirus-infected insect cells. As a substrate, biotinylated peptide corresponding to the activation loop domain of Syk, whose tyrosine residues are autophosphorylated upon activation, was employed to screen both ATP- and substrate-competitive inhibitors. After the kinase reaction in solution phase, substrate was trapped on a streptavidin-coated plate, followed by detection of the phosphorylated tyrosine with europium-labeled anti-phosphotyrosine antibody. The kinase reaction in solution phase greatly enhanced phosphorylation of substrate compared to that of plate-coated substrate. High signal-to-background ratio and low data scattering were obtained in the optimized high-throughput screening (HTS) format. Further, several kinase inhibitors showed concentration-dependent inhibition of recombinant Syk kinase activity with almost the same efficacy for immunoprecipitated Syk from a human cell line. These data suggest that this assay is useful to screen Syk kinase inhibitors in HTS.  相似文献   

9.
The budding yeast Saccharomyces cerevisiae is proving to be an useful and accurate model for eukaryotic DNA replication. It contains both DNA polymerase alpha (I) and delta (III). Recently, proliferating cell nuclear antigen (PCNA), which in mammalian cells is an auxiliary subunit of DNA polymerase delta and is essential for in vitro leading strand SV40 DNA replication, was purified from yeast. We have now cloned the gene for yeast PCNA (POL30). The gene codes for an essential protein of 29 kDa, which shows 35% homology with human PCNA. Cell cycle expression studies, using synchronized cells, show that expression of both the PCNA (POL30) and the DNA polymerase delta (POL3, or CDC2) genes of yeast are regulated in an identical fashion to that of the DNA polymerase alpha (POL1) gene. Thus, steady state mRNA levels increase 10-100-fold in late G1 phase, peak in early S-phase, and decrease to low levels in late S-phase. In addition, in meiosis mRNA levels increase prior to initiation of premeiotic DNA synthesis.  相似文献   

10.
11.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

12.
13.
T Tsurumi 《Journal of virology》1993,67(3):1681-1687
A recombinant baculovirus containing the complete sequence for the Epstein-Barr virus (EBV) BMRF1 gene product, the EBV DNA polymerase accessory protein, under the control of the polyhedrin promoter was constructed. Insect cells infected with the recombinant virus produced two phosphoproteins of 52 and 50 kDa and one unphosphorylated protein of 48 kDa, recognized by anti-BMRF1 protein-specific monoclonal antibody. The major protein bands were 50 and 48 kDa. The expressed BMRF1 gene products were purified to near homogeneity from the nuclear extract of the recombinant baculovirus-infected insect cells by double-stranded DNA-cellulose column chromatography followed by heparin-agarose column chromatography. The purified BMRF1 gene products exhibited higher binding affinity for double-stranded DNA than for single-stranded DNA without ATP hydrolysis. The protein-DNA interaction did not necessarily require a primer terminus. The present system will open the way for the biochemical characterization of the EBV DNA polymerase accessory protein.  相似文献   

14.
Drosophila mitochondrial DNA polymerase has been reconstituted and purified from baculovirus-infected insect cells. Baculoviruses encoding full-length and mature forms of the catalytic and accessory subunits were generated and used in single and co-infection studies. Recombinant heterodimeric holoenzyme was reconstituted in both the mitochondria and cytoplasm of Sf9 cells and required the mitochondrial presequences in both subunits. The recombinant holoenzyme contains DNA polymerase and 3'-5' exonuclease that are stimulated substantially by both salt and mitochondrial single-stranded DNA-binding protein. Thus, the recombinant enzyme exhibits biochemical properties indistinguishable from those of the native enzyme from Drosophila embryos. Production of the catalytic subunit alone yielded soluble protein with the chromatographic properties of the heterodimeric holoenzyme. However, the purified catalytic core has a 50-fold lower specific activity. This provides evidence of a critical role for the accessory subunit in the catalytic efficiency of Drosophila mitochondrial DNA polymerase.  相似文献   

15.
旨在建立分子水平HDAC6小分子抑制剂的高通量筛选模型,用于新型HDAC6特异性小分子抑制剂的发现。建立HDAC6的昆虫表达系统,分离纯化HDAC6蛋白,利用底物Boc-Lys(Ac)-AMC对纯化的HDAC6进行测活,并对测活体系进行优化,以SAHA为阳性抑制剂,确定适合高通量筛选的酶及底物浓度,反应时间等。首先构建HDAC6昆虫真核细胞表达载体,转入昆虫细胞中表达,并利用GST亲和柱纯化获得较高纯度的GST-HDAC6融合蛋白;建立体外HDAC6分子测活方法,表明昆虫表达的GST-HDAC6融合蛋白具有去乙酰化酶活性,并通过对多种参数优化使得Z’因子达到0.60,表明分子水平的HDAC6小分子抑制剂高通量筛选体系成功建立。  相似文献   

16.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

17.
Genetic experiments have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication, and a number of studies have suggested that these two proteins specifically interact. We have confirmed and extended these findings. The viral DNA polymerase from HSV-1-infected cells has been purified as a complex containing equimolar quantities of the UL30 (Pol, the catalytic subunit) and UL42 polypeptides. Sedimentation and gel filtration analyses of this complex are consistent with the idea that the complex consists of a heterodimer of Pol and UL42. A complex with identical physical and functional properties was also purified from insect cells coinfected with recombinant baculoviruses expressing the two polypeptides. Therefore, the formation of the Pol-UL42 complex does not require the participation of any other HSV-encoded protein. We have compared the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells. The specific activity of the catalytic subunit alone was nearly identical to that of the complex when assayed on activated DNA. When assayed on a defined template such as singly primed M13 DNA, however, the combination of Pol and UL42 utilized fewer primers and formed larger products than Pol alone. Template challenge experiments demonstrated that the Pol-UL42 complex was more highly processive than Pol alone. Our data are consistent with the idea that the UL42 polypeptide is an accessory subunit of the DNA polymerase that acts to increase the processivity of polymerization.  相似文献   

18.
J Q Zhou  H He  C K Tan  K M Downey    A G So 《Nucleic acids research》1997,25(6):1094-1099
DNA polymerase delta is usually isolated as a heterodimer composed of a 125 kDa catalytic subunit and a 50 kDa small subunit of unknown function. The enzyme is distributive by itself and requires an accessory protein, the proliferating cell nuclear antigen (PCNA), for highly processive DNA synthesis. We have recently demonstrated that the catalytic subunit of human DNA polymerase delta (p125) expressed in baculovirus-infected insect cells, in contrast to the native heterodimeric calf thymus DNA polymerase delta, is not responsive to stimulation by PCNA. To determine whether the lack of response to PCNA of the recombinant catalytic subunit is due to the absence of the small subunit or to differences in post-translational modification in insect cells versus mammalian cells, we have co-expressed the two subunits of human DNA polymerase delta in insect cells. We have demonstrated that co-expression of the catalytic and small subunits of human DNA polymerase delta results in formation of a stable, fully functional heterodimer, that the recombinant heterodimer, similar to native heterodimer, is markedly stimulated (40- to 50-fold) by PCNA and that the increase in activity seen in the presence of PCNA is the result of an increase in processivity. These data establish that the 50 kDa subunit is essential for functional interaction of DNA polymerase delta with PCNA and for highly processive DNA synthesis.  相似文献   

19.
Abnormal vascularization of the peripheral retina and retinal detachment are common clinical characteristics of Norrie disease (ND), familial exudative vitreoretinopathy, Coats' disease, and retinopathy of prematurity. Although little is known about the molecular basis of these diseases, studies have shown that all of these diseases are associated with mutations in the ND gene. In spite of this, little is known about norrin, its molecular mechanism of action, and its functional relationship with the development of abnormal retinal vasculature. To obtain a large quantity of norrin for structural and functional studies, we have overproduced it in insect cells. For this purpose, a cDNA fragment (869 bp) was isolated from a human retinal cDNA library by amplification and was cloned into an expression vector. The purified plasmid was co-transfected with wild-type linearized Bac-N-Blue DNA into S. frugiperda Sf21 insect cells. The recombinant virus plaques were purified and clones were selected based on the level of recombinant protein expressed in Sf21 cells infected with a purified recombinant virus. From these, a high-titer stock was generated and subsequently used to prepare a fused protein on a large scale. The protein was partially purified by the process of immobilized metal affinity chromatography and the use of ion exchange chromatography  相似文献   

20.
The UL30 protein of herpes simplex virus type 1 (HSV-1) is a catalytically active DNA polymerase which is present in virus infected cells in a heterodimeric complex with an accessory subunit, the UL42 polypeptide. Both proteins are essential for viral DNA synthesis but because the UL42 protein is much more abundant it has been difficult to determine whether its role is related to, or independent of, its interaction with the UL30 protein in vivo. Since the C-terminal region of UL30 has been shown to be important for interaction with the UL42 protein but dispensable for DNA polymerase activity, a recombinant baculovirus which overexpresses a UL30 protein truncated by 27 amino acids at its C-terminus was constructed and used to assess the significance of the protein-protein interaction. The mutated protein was as active as wildtype (wt) UL30 in a DNA polymerase assay in which activated calf thymus DNA was used as template. However, in contrast to the wt protein, the activity of the truncated polymerase on this template was not stimulated by addition of purified UL42. A monoclonal antibody against the UL42 protein co-precipitated the full length but not truncated polymerase from extracts of cells which had been co-infected with a UL42-expressing recombinant baculovirus. Finally, the truncated protein was not active in a transient assay for HSV-1 origin-dependent DNA replication performed in insect cells in tissue culture. These results indicate that sequences at the C-terminus of the UL30 protein which are dispensable for DNA polymerase activity play essential roles both in viral DNA replication and interaction with the UL42 protein, and strongly suggest that the interaction between the proteins is important in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号