首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
Certain mutants of Escherichia coli with an altered permeability barrier have an essentially normal lipopolysaccharide, fatty acid, and phospholipid content, with a slight increase in the membrane protein:lipid ratio. The phospholipid metabolism of the lev and tec strains shows an abnormal response to growth in the selective agents levallorphan and tetracaine, respectively.  相似文献   

2.
B I Marakusha 《Antibiotiki》1980,25(10):753-758
Some characteristics of S. flexneri 2a mutants resistant to various concentrations of polymyxin M were studied. The data indicate that mutations resulting in low (50 microgram/ml) and high (300 microgram/ml) levels of the antibiotic resistance were determined by different genes. Polymyxin resistance led to changed permeability of the outer membrane with respect to detergents and some antibiotics, such as aminoglycosides, penicillins, chloramphenicol and amphotericin B but did not change sensitivity of the strains to some bacteriophages, except phage PI. Mutants resistant to 50 microgram/ml of polymyxin M preserved their ability to induce keratoconjunctivitis in guinea pigs. Part of the strains resistant to 300 microgram/ml of the antibiotic lost this property. No correlation between the polymyxin M resistance level, loss of the pathogenic properties and toxicity of the bacterial cells was found. It was confirmed that though inactivation of endotoxin by polymyxins is associated with their capacity for interaction with lipid A, this component does not participate in development of resistance to these antibiotics.  相似文献   

3.
Peptidase-deficient mutants of Escherichia coli.   总被引:16,自引:11,他引:5  
Mutant derivatives of Escherichia coli K-12 deficient in several peptidases have been obtained. Mutants lacking a naphthylamidase, peptidase N, were isolated by screening for colonies unable to hydrolyze L-alanine beta-naphthylamide. Other mutants were isolated using positive selections for resistance to valine peptides. Mutants lacking peptidase A, a broad-specificity aminopeptidase, were obtained by selection for resistance to L-valyl-L-leucine amide. Mutants lacking a dipeptidase, peptidase D, were isolated from a pepN pepA strain by selection for resistance to L-valyl-glycine. Starting with a pepN pepA pepD strain, selection for resistance to L-valyl-glycyl-glycine or several other valine peptides produced mutants deficient in another aminopeptidase, peptidase B. Mutants resistant to L-valyl-L-proline lack peptidase Q, an activity capable of rapid hydrolysis of X-proline dipeptides. Using these selection procedures, a strain (CM89) lacking five different peptidases has been isolated. Although still sensitive to valine, this strain is resistant to a variety of valine di- and tripeptides. The ability of this strain to use peptides as sources of amino acids is much more restricted than that of wild-type E. coli strains. Strains containing only one of the five peptidases missing in CM89 have been constructed by transduction. The peptide utilization profiles of these strains show that each of the five peptidases can function during growth in the catabolism of peptides.  相似文献   

4.
The susceptibility to Novobiocin (NB) and Nikkol-SNP 7.5 A (NS), an anionic surfactant, was studied in 458 strains of coagulase-positive Staphylococcus aureus isolated from clinical sources. Twenty three (4.9%) of these strains were resistant to NB with minimum inhibition concentration (MIC) of 1.6 μg per ml or more, 97 (21.2%) resistant to NS with MIC of 6.25 mg per ml or more, and 17 (3.7%) resistant to both drugs. Cross-resistance to NB and NS was found in 74 per cent of 23 NB-resistant strains and 17.5 per cent of 97 NS-resistant strains. Nearly one half of NS-resistant strains belonged to phase group I, while the remainder were non-typable. The majority of the NB-resistant strains were not phage typable. In S. aureus strain PS 53 used for propagating phage 53, resistance to 25 mg per ml of NS was attained rapidly by single step without accompanying that to NB, whereas resistance to 25 μg per ml of NB developed gradually by three successive steps and was accompanied by a rapid development of resistance to NS first by two steps. The transduction experiments in strain PS 53 showed that resistance to NB and NS was jointly transduced and the genetic loci responsible for resistance to both drugs are closely linked.  相似文献   

5.
Mutants of Escherichia coli with altered resistance to low molecular weight organic solvents were isolated. Solvent-resistant mutants showed a decrease in the ratio of phosphatidylethanolamine to the anionic phospholipids (phosphatidylglycerol and cardiolipin) relative to the wild-type, whereas solvent-sensitive strains showed an increase. Reversion studies on representative mutants demonstrated that the phenotypic response to solvents and the changes in phospholipid composition were genetically associated. The fatty acid and lipopolysaccharide compositions of the various mutants showed no significant differences from the parental strain. The lesions in two of the solvent-sensitive mutants (DC7 and DC9) and one of the resistant mutants (DC11) were mapped by cotransduction with phage P1 and shown to lie very close to the pss locus at 56 min on the Escherichia coli map.  相似文献   

6.
It is well established that Pseudomonas aeruginosa cells grown in Mg2+-deficient medium acquire nonmutational resistance to the chelator ethylenediaminetetraacetate and to the cationic antibiotic polymyxin B; this type of resistance can be reversed by transferring the cells to Mg2+-sufficient medium for a few generations. Stable mutants resistant to polymyxin B were isolated and shown to have also gained ethylenediaminetetraacetate resistance. Both the mutants and strains grown on Mg2+-deficient medium had greatly enhanced levels of outer membrane protein H1 when compared with the wild-type strain or with revertants grown in Mg2+-sufficient medium. It was determined that in all strains and at all medium Mg2+ concentrations, the cell envelope Mg2+ concentration varied inversely with the amount of protein H1. In addition, the increase in protein H1 in the mutants was associated with an increase in resistance to another group of cationic antibiotics, the aminoglycosides, e.g., gentamicin. We propose that protein H1 acts by replacing Mg2+ at a site on the lipopolysaccharide which can otherwise be attacked by the cationic antibiotics or ethylenediaminetetraacetate.  相似文献   

7.
The Genetics of Levamisole Resistance in the Nematode CAENORHABDITIS ELEGANS   总被引:10,自引:10,他引:0  
We have characterized a small group of genes (13 loci) in the nematode Caenorhabditis elegans that, when mutated, confer resistance to the potent anthelmintic levamisole. Mutants at the 7 loci conferring the most extreme resistance generally possess almost identical visible and pharmacological phenotypes: uncoordinated motor behavior, most severe in early larval life, extreme resistance to cholinergic agonists and sensitivity to hypo-osmotic shock. Mutants with exceptional phenotypes suggest possible functions for several of the resistance loci. The most extreme mutants can readily be selected by their drug resistance (211 mutants, as many as 74 alleles of one gene). The more common resistance loci are likely to be unessential genes, while loci identified by only a few alleles may be essential genes or genes conferring resistance only when mutated in a special way. We propose that these mutants represent a favorable system for understanding how a small group of related genes function in a simple animal. The extreme drug resistance of these mutants makes them useful tools for the genetic manipulation of C. elegans. And, as the most resistant class of mutants might lack pharmacologically functional acetylcholine receptors (Lewis et al. 1980), these mutants may also be of some neurobiological significance.  相似文献   

8.
Escherichia coli K-12 ampicillin-resistant mutants hyperproducing chromosomal beta-lactamase arose spontaneously from strains carrying ampA1 ampC(+). Such mutants were found even in a recA background. Two Amp(r)-100 strains were analyzed genetically. The Amp(r)-100 resistance level of both strains could be transduced by direct selection for ampicillin resistance. Several classes of ampicillin-resistant transductants were found that differed from one another in the beta-lactamase activity and the ampicillin resistance mediated by an ampA1 ampC(+)-carrying strain. The data suggested that beta-lactamase hyperproduction was due to repetitions of the chromosomal amp genes. The size of the repeated region was calculated from cotransduction estimates, using the formula of Wu (Genetics 54:405-410, 1966), and was found to be about 1 min in one strain and 1.5 min in the other. Second-step Amp(r)-400 mutants were isolated from an Amp(r)-100 strain. The resistance of these mutants was apparently also due to repetitions, each mediating a resistance to about 10 mug/ml. Mutants of wild-type strains that were moderately resistant to ampicillin also gave rise to intermediate-resistance classes, suggesting repetitions of the wild-type amp alleles. F' factors hyperproducing chromosomal beta-lactamase by gene repetitions were constructed. They mediated levels of ampicillin resistance comparable to that of naturally occurring resistance plasmids. The expression of beta-lactamase hyperproduction was not affected by the presence of ampA and ampC alleles in trans and did not act in trans on the other alleles.  相似文献   

9.
Experiments were performed with two strains of plague bacteria--231 (isolated from marmot) and 358 (isolated from human) and their isogenic variants with Fra- and Fra-Tox- phenotype. Mutants resistant to rifampicin (Rifr) and nalidixic acid (Nalr) appeared independently of pathogen phenotype and genotype with frequency n.10(-8)-n.10(-9), subsequently. Rifr mutation influenced on virulence manifestation at albino mice and antigendeficient variants with Fra- and Fra-Tox- phenotype. In every group of strains highly virulent subcultures were registered. Resistance to nalidixic acid mainly was not associated with virulence loss. Nalr mutants of parent and antigenmodified mutants were cross resistant to fluoroqinolones (ciprofloxacin, ofloxacin, pefloxacin, lomefloxacin). LD50 for untreated albino mice did not differ from LD50, for mice treated with rifampicin (when mice were infected with strain resistant to rifampicin) or with nalidixic acid and fluoroquinolones (when animals were infected with Nalr mutants). Antigenmodified strains of plague bacteria and their Rifr, Nalr mutants were able to overcome specific immune reaction. The drugs should be used in synergic combinations (with aminoglycosides or cephalosporines of III generation) to prevent appearance of virulent strains resistant to rifampicin and fluroquinolones.  相似文献   

10.
Summary Mutants of an aminopeterin-resistant strain of pneumococcus possessing four different suppressor genes have been isolated after mutagenesis with 5-BUdR. The suppressed strains exhibit a partial revertant phenotype since the parental aminopterin resistance remained unchanged but the associated sensitivity to an excess concentration of the branched chain amino acids L-isoleucine, L-valine and L-leucine was diminished almost to the level of the wild-type strain C13. The suppressor mutations had therefore dissociated the two properties associated with a mutation in the amiA cistron, namely aminopterin resistance and isoleucine sensitivity. The suppressor genes reduced the sensitivity to isoleucine of a number of amiA mutants, but had no effect on the level of resistance to a number of unrelated genes conferring resistance to other antibacterial substances. The suppressor mutations themselves did not confer resistance to aminopterin. Mapping of the suppressor mutations by recombination analysis and by clonal analysis showed them to be intragenic lying in the region near to the amiA-r19, amiA-423, amiA-r17 loci.  相似文献   

11.
The isolated outer membrane from cells of a Pseudomonas aeruginosa strain exhibiting adaptive resistance to polymyxin was not affected by polymyxin treatment, as monitored by electron microscopy of negatively stained preparations. This was in sharp contrast with extensive disruption by polymyxin of the outer membranes of the parent polymyxin-sensitive strain and the resistant strain following reversion to greater polymyxin sensitivity. The isolated cytoplasmic membrane of the polymyxin-resistant strain, on the other hand, remained sensitive to the disruptive effects of polymyxin treatment. The permeability characteristics of the resistant strains appear to be altered, as indicated by differences in minimal inhibitory concentrations for a variety of antibiotics between the polymyxin-sensitive and polymyxin-resistant strains. No evidence was found for a polymyxin-inactivating enzyme in osmotic shock fluid from the polymyxin-resistant strain. No evidence for a cytoplasmic membrane repair mechanism was found in the polymyxin-resistant strain. These observations suggest that the mechanism of adaptive polymyxin resistance in this model system is the alteration of the outer membrane so that it excludes polymyxin from reaching the still sensitive cytoplasmic membrane.  相似文献   

12.
Transduction of a methicillin-resistance determinant (mec) in Staphylococcus aureus RN450 was dependent on its prior lysogenization with an appropriate temperate phage. In addition, an appropriate transduced penicillinase plasmid was usually required. Some phage 80-resistant variants of RN450 or of its parental lysogenic strain, NCTC 8325, were also effective recipients for transduction of mec. Elimination of prophage from RN450 abrogated its effectiveness as a transductional recipient of mec. Elimination of prophage from a methicillin-resistant transductant of RN450 reduced resistance to undetectable levels in six of seven phage-eliminated strains. In four of these a variable number of clones again became phenotypically resistant after lysogenization alone or lysogenization combined with reintroduction of a penicillinase plasmid. In two prophage-eliminated strains, no evidence of residual mec could be adduced. The establishment, expression, or stability of the transduced mec in strain RN450 appeared to depend on some function determined by a prophage or a prophage and a penicillinase plasmid.  相似文献   

13.
Upon exposure to 6,000 U of polymyxin B sulfate per ml, cells of the polymyxin-sensitive PAO 1 strain of Pseudomonas aeruginosa displayed in thin sections long projections arising from the outer membrane of the cell wall and extensive cytoplasmic degradation with accumulation of cytoplasmic membrane infoldings. Polymyxin-resistant isolates derived from the PAO 1 strain, however, grew well in the presence of 6,000 U of polymyxin per ml and exhibited none of these effects, having instead the appearance of a typically healthy cell. Freeze-etching of cells of the sensitive strain grown in basal medium without polymyxin revealed a concave cell wall layer studded with numerous particles. Freeze-etching of cells of the resistant isolates grown in basal medium containing 6,000 U of polymyxin per ml revealed a concave cell wall layer (i.e., the outer half of the outer membrane) in which most of these particles were absent. Thus, acquisition of resistance to polymyxin was correlated with an alteration in the architecture of the outer membrane. When the resistant isolates were grown in the basal medium lacking polymyxin and then freeze-etched, the particle distribution in the concave cell wall layer resembled that of the sensitive parent strain. The cells had regained sensitivity to polymyxin upon suspension in medium containing 6,000 U/ml as determined by their failure to grow and by internal damages seen in thin sections. These cells also had acquired increased sensitivity to ethylenediaminetetraacetate, whereas the polymyxin-resistant cells grown in the presence of polymyxin were resistant to lysis by ethylenediaminetetraacetate. The polymyxin-resistant isolates were not stable mutants but instead represented an adaptive response to the presence of polymyxin in the medium.  相似文献   

14.
Isolation of nonsense suppressor mutants in Pseudomonas.   总被引:31,自引:13,他引:18       下载免费PDF全文
A strain of Escherichia coli harboring the drug resistance plasmid RP1 was treated with the mutagen N-methyl-N-nitro-N-nitro-N-nitrosoguanidine, and mutants were isolated in which ampicillin resistance had been lost due to an amber mutation in the plasmid. One of these mutants was again treated, and a strain was isolated in which tetracycline resistance was also lost due to an amber mutation in the plasmid. The plasmid containing amber mutations in the genes amp and tet was named pLM2. This plasmid could be transferred to strains of Pseudomonas aeruginosa, P. phaseolicola, and P. pseudoalcaligenes. Mutants resistant to ampicillin and tetracycline could not be obtained from P. phaseolicola carrying pLM2. However, strains of E. coli, P. aeruginosa, and P. pseudoalcaligenes carrying the plasmid did produce mutants simultaneously resistant to both antibiotics. All of the mutants of E. coli had developed nonsense suppressors since they became phenotypically lac+, although harboring a lac amber mutation, and formed plaques with amber mutants of phages PRR1 and PRD1 that attack organisms carrying RP1. Approximately 20% of the resistant mutants of P. aeruginosa and P. pseudoalcaligenes were sensitive to the amber mutant of PRD1. These mutants were of variable stability and grew somewhat more slowly than their parent strains. One of the suppressor mutants of P. pseudoalcaligenes, designated ERA(pLM2)S4, was used for the isolation of nonsense mutants of bacteriophage PHA6, a virus having a segmented genome of double-stranded ribonucleic acid and an envelope of lipids and proteins.  相似文献   

15.
Summary Mutants ofEscherichia coli K12, deficient in up to three major outer membrane proteinsb,c andd have been constructed. Mutants that lack the lipopolysaccharide sugar heptose are deficient in proteinb. All heptose-deficient strains are supersensitive to lysozyme, various antibiotics and detergents. They excrete the periplasmic enzyme ribonuclease I. Mutants deficient in proteinsc and/ord have the same sensitivity towards these compounds as the parent strain. Cells of single, double and triple mutants are all rod-shaped. Electrophoretic analysis of cell evelope proteins indicates that in some mutants the protein deficiency is partially compensated for by increased amounts of one or two of the other major outer membrane proteins. Heptose-deficient strains have an increased amount of 2-keto-3-deoxyoctonate.  相似文献   

16.
A family of mutants of Salmonella typhimurium with altered lipopolysaccharide (LPS) core chain lengths were assessed for sensitivity to freeze-thaw and other stresses. Deep rough strains with decreased chain length in the LPS core were more susceptible to novobiocin, polymyxin B, bacitracin, and sodium lauryl sulfate during growth, to ethylenediaminetetraacetic acid and sodium lauryl sulfate in resting suspension, and to slow and rapid freeze-thaw in water and saline, and these strains exhibited more outer membrane damage than the wild type or less rough strains. Variations in the LPS chain length did not dramatically affect the sensitivity of the strains to tetracycline, neomycin, or NaCl in growth conditions or the degree of freeze-thaw-induced cytoplasmic membrane damage. The deeper rough isogenic strains incorporated larger quantities of less-stable LPS and less protein into the outer membrane than did the wild type or less rough mutants, indicating that the mutations affected outer membrane synthesis or organization or both. Nikaido's model of the role of LPS and protein in determining the resistance of gram-negative bacteria to low-molecular-weight hydrophobic antibiotics is discussed in relation to the stress of freeze-thaw.  相似文献   

17.
A family of mutants of Salmonella typhimurium with altered lipopolysaccharide (LPS) core chain lengths were assessed for sensitivity to freeze-thaw and other stresses. Deep rough strains with decreased chain length in the LPS core were more susceptible to novobiocin, polymyxin B, bacitracin, and sodium lauryl sulfate during growth, to ethylenediaminetetraacetic acid and sodium lauryl sulfate in resting suspension, and to slow and rapid freeze-thaw in water and saline, and these strains exhibited more outer membrane damage than the wild type or less rough strains. Variations in the LPS chain length did not dramatically affect the sensitivity of the strains to tetracycline, neomycin, or NaCl in growth conditions or the degree of freeze-thaw-induced cytoplasmic membrane damage. The deeper rough isogenic strains incorporated larger quantities of less-stable LPS and less protein into the outer membrane than did the wild type or less rough mutants, indicating that the mutations affected outer membrane synthesis or organization or both. Nikaido's model of the role of LPS and protein in determining the resistance of gram-negative bacteria to low-molecular-weight hydrophobic antibiotics is discussed in relation to the stress of freeze-thaw.  相似文献   

18.
Mutants of Salmonella typhimurium defective in glutamate dehydrogenase activity were isolated in parent strains lacking glutamate synthase activity by localizcd mutagenesis or by a general mutagenesis combined with a cycloserine enrichment for glutamate auxotrophs. Two mutants with temperature-sensitive phenotypes had glutamate dehydrogenase activities that were more thermolabile than that of an isogenic control strain. Eight other mutants had less than 10% of the wild-type glutamate dehydrogenase activity. All the mutations were cotransducible with a Tn10 element (zed-2:Tn10) located at approximately 23 U on the S. typhimurium linkage map. These data strongly indicate that this region contains the structural gene (gdhA) for glutamate dehydrogenase.  相似文献   

19.
A collection of transposon-mutagenized strains of Yarrowia lipolytica was screened for wall defects by determination of their sensitivity to calcofluor white. A number of strains were hypersensitive, whereas others were resistant. Different non-allelic mutants displayed increased sensitivity to autolysis and lytic enzymes, independently of whether they were sensitive or resistant to calcofluor white. A thorough analysis of their cell walls revealed minor quantitative alterations, and no significant changes in chitin content. Electrophoretic analysis of wall-bound and excreted proteins proved to be a sensitive method that revealed defects in the cell wall structure of the mutants. Important alterations in the patterns of the wall proteins extracted by SDS or by enzymatic treatments were noticed for the mutants, as compared to the parental strain. Mutants released to the growth medium a larger number of protein species than the parental strain, suggesting impairment in wall assembly of certain polypeptides. Patterns of wall-bound and excreted proteins, as well as alterations in wall chemical composition were not diagnostic of calcofluor white sensitivity or resistance, but were specific for each mutant. Our data show that an increase in either sensitivity or resistance of Y. lipolytica to certain levels of calcofluor is equally indicative of alterations in cell wall structure, independent of chitin levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The cell envelopes of antibiotic-resistant and -sensitive isogenic strains of Neisseria gonorrhoeae were analyzed to determine whether acquisition of genetic loci for altered antibiotic sensitivity was accompanied by alterations in cell envelope composition. No differences in the composition of phospholipids and lipopolysaccharides were noted. Acquisition of mtr-2, which results in low-level, nonspecific increased resistance to multiple antibiotics, dyes, and detergents, was accompanied by a sevenfold increase in the amount of a minor, 52,000-molecular-weight outer membrane protein and a 32% increase in the extent of peptidoglycan cross-linking. Subsequent addition of the nonspecific hypersensitivity loci env-1 or env-2 to a strain carrying mtr-2 resulted in reversal of the phenotypic resistance determined by mtr-2 and marked reduction in both the amount of the 52,000-molecular-weight outer membrane protein and the extent of peptidoglycan cross-linking. Introduction of penB2, which results in a fourfold increase in resistance to penicillin and tetracycline, was accompanied by the disappearance of the principal outer membrane protein of the wild-type strain (molecular weight, 36,900) and the appearance of a new species of the principal outer membrane protein (molecular weight, 39,400) in the transformant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号