首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed “promiscuous gene expression” (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80+ mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.  相似文献   

5.
6.
The mechanism underlying the autoimmune polyglandular syndrome type-1 (APS1) has been attributed to defective T-cell negative selection resulting from reduced expression and presentation of autoantigens in thymic medullary epithelial cells (MECs). It has also been postulated that Aire is involved in development of regulatory T cells, although supporting evidence is lacking. Here we show that expression of Aire in MECs is required for development of iNKT cells, suggesting a role for iNKT cells in APS1.  相似文献   

7.
8.
Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.  相似文献   

9.

Background

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is an autosomal recessive disease due to mutations of the autoimmune regulator (AIRE) gene. Typical manifestations include candidiasis, Addison's disease, and hypoparathyroidism. Type 1 diabetes, alopecia, vitiligo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia and premature ovarian failure are other rare associated diseases although other conditions have been associated with APECED.

Case presentation

What follows is the clinical, endocrinological and molecular data of a female APECED patient coming from Lithuania. The patient was affected by chronic mucocutaneous candidiasis, hypoparathyroidism and pre-clinical Addison's disease. Using direct sequencing of all the 14 exons of the AIRE gene in the patient's DNA, we identified in exon 6 the known mutation c.769 C>T (p.Arg257X) in compound heterozygosity with the newly discovered mutation c.1214delC (p.Pro405fs) in exon 10. The novel mutation results in a frameshift that is predicted to alter the sequence of the protein starting from amino acid 405 as well as to cause its premature truncation, therefore a non-functional Aire protein.

Conclusions

A novel mutation has been described in a patient with APECED with classical clinical components, found in compound heterozygosity with the c.769 C>T variation. Expanded epidemiological investigations based on AIRE gene sequencing are necessary to verify the relevancy of the novel mutation to APECED etiopathogenesis in the Lithuanian population and to prove its diagnostic efficacy in association with clinical and immunological findings.  相似文献   

10.
11.
自身免疫调节因子(AIRE)的研究进展   总被引:1,自引:0,他引:1  
于春雷  刘丹  李一  杨贵贞 《生命科学》2003,15(5):289-292,306
自身免疫调节因子(autoimmune regulator,AIRE)是一种具有转录活化潜能的DNA结合蛋白。由于AIRE基因的突变可导致自身免疫病APECED(autoimmune polyendocrinopathy—candidiasis-ectodermal dystrophy,APECED),又称自身免疫性多腺体综合征I(autoimmune polyglandular syndrome typeI,APSI)。因此,这一基因在正常生理状态下很可能对维持自身免疫耐受、控制自身免疫起着重要作用。对自身免疫耐受产生机制的揭示将为自身免疫病、超敏反应、移植排斥及肿瘤的治疗提供新的策略。本文对AIRE的基因鉴定、分子结构和生化功能、亚细胞定位、组织分布及其在自身耐受产生中的作用作一综述性介绍。  相似文献   

12.
Genetic homogeneity of autoimmune polyglandular disease type I.   总被引:8,自引:0,他引:8       下载免费PDF全文
Autoimmune polyglandular disease type I (APECED) is an autosomal recessive autoimmune disease (MIM 240300) characterized by hypoparathyroidism, primary adrenocortical failure, and chronic mucocutaneous candidiasis. The disease is highly prevalent in two isolated populations, the Finnish population and the Iranian Jewish one. Sporadic cases have been identified in many other countries, including almost all European countries. The APECED locus has previously been assigned to chromosome 21q22.3 by linkage analyses in 14 Finnish families. Locus heterogeneity is a highly relevant question in this disease affecting multiple tissues and with great phenotypic diversity. To solve this matter, we performed linkage and haplotype analyses on APECED families rising from different populations. Six microsatellite markers on the critical chromosomal region of 2.6 cM on 21q22.3 were analyzed. Pairwise linkage analyses revealed significant LOD scores for all these markers, maximum LOD score being 10.23. The obtained haplotype data and the geographic distribution of the great-grandparents of the Finnish APECED patients suggest the presence of one major, relatively old mutation responsible for approximately 90% of the Finnish cases. Similar evidence for one founder mutation was also found in analyses of Iranian Jewish APECED haplotypes. These haplotypes, however, differed totally from the Finnish ones. The linkage analyses in 21 non-Finnish APECED families originating from several European countries provided independent evidence for linkage to the same chromosomal region on 21q22.3 and revealed no evidence for locus heterogeneity. The haplotype analyses of APECED chromosomes suggest that in different populations APECED is due to a spectrum of mutations in a still unknown gene on chromosome 21.  相似文献   

13.
14.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease that is caused by mutations in the AIRE gene. Murine studies have linked AIRE to thymocyte selection and peripheral deletional tolerance, but the pathogenesis of the human disease remains unclear. In this study, we show that APECED patients have elevated IL-7 levels and a drastically decreased expression of IL-7R on CD8(+) T cells. This is associated with increased proliferation and a decreased expression of the negative TCR regulator CD5 in the CD45RO(-) subset. The CD45RO(-) cells also display oligoclonal expansions, decreased expression of the lymph node homing factors CCR7 and CD62L, and increased expression of perforin, consistent with the accumulation of highly differentiated effector cells. The CD45RO(-)CCR7(+)CD8(+) population of cells with markers characteristic of naive phenotype is also skewed, as shown by decreased expression of CD5 and increased expression of perforin. The putative CD31(+) recent thymic emigrant population is likewise affected. These data are consistent with IL-7 dysregulation inducing a decreased threshold of TCR signaling and self-antigen-driven proliferation, probably in synergy with the failed thymic selection. The resultant loss of CD8(+) T cell homeostasis is likely to play a significant role in the pathogenesis of APECED. Our findings may also hold lessons for other diseases in which the IL-7-IL-7R pathway has emerged as a risk factor.  相似文献   

15.
16.
17.
Mutations in the autoimmune regulator protein AIRE1 cause a monogenic autosomal recessively inherited disease: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE1 is a multidomain protein that harbors two plant homeodomain (PHD)-type zinc fingers. The first PHD finger of AIRE1 is a mutational hot spot, to which several pathological point mutations have been mapped. Using heteronuclear NMR spectroscopy, we determined the solution structure of the first PHD finger of AIRE1 (AIRE1-PHD1), and characterized the peptide backbone mobility of the domain. We performed a conformational analysis of pathological AIRE1-PHD1 mutants that allowed us to rationalize the structural impact of APECED-causing mutations and to identify an interaction site with putative protein ligands of the AIRE1-PHD1 domain. The structure unequivocally exhibits the canonical PHD finger fold, with a highly conserved tryptophan buried inside the structure. The PHD finger is stabilized by two zinc ions coordinated in an interleaved (cross-brace) scheme. This zinc coordination resembles RING finger domains, which can function as E3 ligases in the ubiquitination pathway. Based on this fold similarity, it has been suggested that PHD fingers might also function as E3 ligases, although this hypothesis is controversial. At variance to a previous report, we could not find any evidence that AIRE1-PHD1 has an intrinsic E3 ubiquitin ligase activity, nor detect any direct interaction between AIRE1-PHD1 and its putative cognate E2. Consistently, we show that the AIRE1-PHD1 structure is clearly distinct from the RING finger fold. Our results point to a function of the AIRE1-PHD1 domain in protein-protein interactions, which is impaired in some APECED mutations.  相似文献   

18.
Autoimmune polyglandular syndrome type 1 (APS1), also known as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), is an autosomal recessive disorder characterized by the failure of several endocrine glands as well as nonendocrine organs. The autoimmune regulator (AIRE) gene responsible for APS1 on chromosome 21q22.3 has recently been identified. Here, we have characterized mutations in the AIRE gene by direct DNA sequencing in 16 unrelated APS1 families ascertained mainly from the USA. Our analyses identified four different mutations (a 13-bp deletion, a 2-bp insertion, one nonsense mutation, and one potential splice/donor site mutation) that are likely to be pathogenic. Fifty-six percent (9/16) of the patients contained at least one copy of a 13-bp deletion (1094–1106del) in exon 8 (seven homozygotes and two compound heterozygotes). A nonsense mutation (R257X) in exon 6 was also found in 31.3% (5/16) of the USA patients. These data are important for genetic diagnosis and counseling for families with autoimmune endocrine syndromes. Received: 24 August 1998 / Accepted: 29 September 1998  相似文献   

19.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号