首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine–acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV. The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

2.
Abstract

A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2′-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (C50 = 10?3 to 10?4 M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10?5 to 10?6 M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

3.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target.  相似文献   

5.
Summary The production of l-phenylalanine from the racemate d,l-phenyllactate in an enzyme membrane reactor has been examined. In a first step the racemate is dehydrogenated to the prochiral intermediate phenylpyruvate by the enzymes d-and l-hydroxyisocaproate dehydrogenase. In a second step phenylpyruvate is reductively aminated to l-phenylalanine by l-phenylalanine dehydrogenase. Both steps are dependent on coenzyme, the first one requires NAD, the second one NADH in stoichiometric amounts; in this way the coenzyme is regenerated and only required catalytically. The coenzyme is covalently bound to polyethylene glyco-20 000 and can thus be retained in the reactor analogously to the three enzymes. In order to optimize the continuous production of l-phenylalanine from d,l-phenyllactate, models of the reaction kinetics and of the reactor system have been set up. By means of the reactor model, we can calculate the optimum ratio of the three enzymes, the optimum coenzyme concentration and the optimum phenylpyruvate concentration in the feed.In this process, at a substrate concentration of 50 mM d,l-phenyllactate we reached a spacetime-yield of 28 g l-Phe/(l*d).Abbreviations PEG polyethylene glycol - d-HicDH d-hydroxyisocaproate dehydrogenase - l-HicDH l-hydroxyisocaproate dehydrogenase - PheDH l-phenylalanine dehydrogenase - V max maximum velocity - K M Michaelis-Menten constant - K l inhibition constant - R1 reaction rate of the d-HicDH forward reaction - R2 reaction rate of the d-HicDH reverse reaction - R3 reaction rate of the l-HicDH forward reaction - R4 reaction rate of the l-HicDH reverse reaction - R5 reaction rate of the PheDH forward reaction - R6 reaction rate of the PheDH reverse reaction - d-PLac d-phenyllactate - l-PLac l-phenyllactate - PPy phenylpyruvate - l-Phe l-phenylalanine - NH4 ammonium - residence time  相似文献   

6.
The metabolism of the natural amino acid l-valine, the unnatural amino acids d-valine, and d-, l-phenyglycine (d-, l-PG), and the unnatural amino acid amides d-, l-phenylglycine amide (d-, l-PG-NH2) and l-valine amide (l-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed constitutive l-amidase activities towards l-PG-NH2 and l-Val-NH2, both following the same pattern of expression, suggesting the involvement of similarly regulated enzymes, or a common enzyme. Quite surprisingly, growth in mineral media with l-PG-NH2 resulted in variable, long lag phases of growth and strongly reduced l-amidase activities. Conversion of d-PG-NH2 into d-PG and l-PG also occurred and could be attributed to the presence of an inducible d-amidase and the racemization of the amino acid amide in combination with l-amidase activity, respectively. The further degradation of l-PG and d-PG involved constitutive l-PG aminotransferase and inducible d-PG dehydrogenase activities, respectively, both with a high degree of enantioselectivity. Amino acid racemase activity for d- and l-PG was not detected. Correspondence to: L. Dijkhuizen  相似文献   

7.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

8.
The occurrence of a new bacterial dehalogenase acting on both the optical isomers of 2-halogenated alkanoic acids was demonstrated. When the haloalkanoic acid-utilizing bacteria were screened in a medium containing dl-2-chloropropionate as a sole carbon source, two types of bacteria were isolated: (1) a few strains utilizing both d- and l-isomers of 2-chloropropionate and (2) strains utilizing only the l-isomer. A dehalogenating enzyme was obtained from the cells of Pseudomonas sp. which is able to utilize both isomers. The crude enzyme catalyzed the dehalogenation of d- and l-2-chloropropionates to yield l- and d-isomers of lactate, respectively. The enzyme showed the same pH optimum and heat inactivation rate for the d- and l-isomers. Apparent K m values for d- and l-2-chloropropionates were 4.5 and 1.0 mM, respectively. The enzyme acted specifically on 2-haloalkanoic acids. Activity staining of disc-gels electrophoresed witg the crude enzyme preparation showed that the dehalogenation of d- and l-2-chloropropionates, monochloroacetate, dichloroacetate, 2,2-dichloropropionate, and dl-2-chlorobutyrate is due to a single protein.Abbreviations MCA monochloroacetic acid - DCA dichloroacetic acid - TCA trichloroacetic acid - 2 MCPA 2-monochloropropionic acid - 22 DCPA 2,2-dichloropropionic acid - 3 MCPA 3-monochloropropionic acid - 2 MCBA 2-monochlorobutyric acid - 3 MCBA 3-monochlorobutyric acid - 4 MCBA 4-monochlorobutyric acid  相似文献   

9.
Abstract

In a quest for developing novel anti-tubercular agents, a series of 3-benzylidene-4-chromanones 1al were evaluated for growth inhibition of Mycobacterium tuberculosis H37Rv. Three promising compounds 1d, g, j emerged as the lead compounds with the IC50 and IC90 values of less than 1?µg/mL. Evaluation of the potent compounds 1d, g, j and k against Vero monkey kidney cells revealed that these compounds are far more toxic to M. tuberculosis than to Vero cells. Structure–activity relationships demonstrated that 3-benzylidene-4-chromanones are more potent against M. tuberculosis than the related 2-benzylidene cycloalkanones and the meta substituted chromanone derivatives are more active than their ortho- and para-counterparts. Some guidelines for amplifying the project are presented.  相似文献   

10.
A protoplast-to-plant regeneration system has been established for sweet potato (Ipomoea batatas (L.) Lam.) and its wild relative, I. lacunosa L. Viable protoplasts, isolated from preplasmolyzed stems and petioles of in vitro-grown plants, were cultured on liquid MS (Murashige & Skoog 1962) medium that supported cell division and colony formation. Embryogenic calli of sweet potato were induced on agar-solidified MS medium supplemented with 3% (w/v) sucrose, 50 mg l-1 casamino acids, 0.2–0.5 mg l-1 2,4-d, 1.0 mg l-1 kinetin and 1.0 mg l-1 ABA. On average, 3 plants were regenerated from a single sweet potato callus subcultured on semi-solid MS medium containing 3% (w/v) sucrose, 800 mg l-1 glutamine, 2.0 mg l-1 BA or 1.0 mg l-1 kinetin and 1.0 mg l-1 GA3. Embryogenic calli of I. lacunosa L. were initiated on semi-solid MS medium containing 0.2–0.5 mg l-1 IAA and 1.0–2.0 mg l-1 BA. An average of 5 plants was regenerated from a single sweet potato callus subcultured on semi-solid MS medium containing 0.5 or 1.0 mg l-1 GA3.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole acetic acid - MES 2-(N-morpholino)-ethane sulfonic acid - NAA -naphthaleneacetic acid  相似文献   

11.
Incorporation of l- or d-Tic into position 7 of oxytocin (OT) and its deamino analogue ([Mpa1]OT) resulted in four analogues, [l-Tic7]OT (1), [d-Tic7]OT (2), [Mpa1,l-Tic7]OT (3) and [Mpa1,d-Tic7]OT (4). Their biological properties were described by Fragiadaki et al. (Eur J Med Chem 42:799–806, 2007). Their NMR study (NOESY, TOCSY, 1H–13C HSQC spectra) is presented here. Analogues 1, 3 and 4 showed partial agonistic activity, analogue 2 was pure antagonist, suggesting that a cis conformation between residues 6 and 7 of the molecule does not result in antagonistic activity. However, the reduction in agonistic activity of analogues 1, 3 and 4 in comparison to oxytocin is consistent with the reduction of the trans conformation form. Binding affinity for the human oxytocin receptor with IC50 value of 130, 730, 103, and 380 nM for peptides 1, 2, 3, and 4, respectively, showed lower affinity in the case of d analogues. Deamination slightly increased the affinity. The existence of both cis and trans configurations of the Cys6-d-Tic7 bond is supported by observation of two sets of cross-peaks for 1H and 13C nuclei for most of the residues of the peptide not only in NOESY and TOCSY but also in 1H–13C HSQC spectra. The MS and HPLC indicate the presence of a single molecule/peptide, and NMR data thus suggest that this second set of peaks is due to the cis conformation.  相似文献   

12.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

13.
We have reported that transglycosylation activity of endo--N-acetylglucosaminidase fromArthrobacter protophormiae (endo-A) can be enhanced to near completion using GlcNAc as an acceptor in a medium containing 30% acetone (Fan J-Q, Takegawa K, Iwahara S, Kondo A, Kato I, Abeygunawardana C, Lee YC (1995)J Biol Chem 270: 17723–29). In this paper, we found that the endo-A can also transfer an oligosaccharide, Man9GlcNAc, tol-Fuc using Man9GlcNAc2Asn as donor substrate in a medium containing 35% acetone. The transglycosylation yield was greater than 25% when 0.2m l-Fuc was used as acceptor. The transglycosylation product was purified by high performance liquid chromatography on a graphitized carbon column and the presence ofl-Fuc was confirmed by sugar composition analysis and electrospray mass spectrometry. Sequential exo-glycosidase digestion of pyridyl-2-aminated transglycosylation product, Man9GlcNAc-l-Fuc-PA, revealed that a -anomeric configuration linkage was formed between GlcNAc andl-Fuc. The GlcNAc was found to be 1,2-linked tol-Fuc by two methods; i) collision-induced decomposition on electrospray mass spectrometry after periodate oxidation, reduction and permethylation of Man9GlcNAc-l-Fuc; and ii) preparation of Man9GlcNAc-l-Fuc-PA, its periodate oxidation and reduction, followed by hydrolysis and HPLC analysis. Thus, the structure of the oligosaccharide synthesized by endo-A transglycosylation was determined to be Man9GlcNAc(1,2)-l-Fuc. Methyl -l-fucopyranoside,l-Gal are also acceptors for the enzymic transglycosylation. However, transglycosylation failed when methyl -l-fucopyranoside,d-Fuc andd-Gal were used. These results indicate that the endo-A requires not only 3-OH and 4-OH to be equatorial but also a4C1-conformation or equivalent conformation of the acceptor to perform transglycosylation.Abbreviations endo-A endo--N-acetylglucosaminidase fromArthrobacter protophormiae - PA pyridyl-2-amino- - AP aminopyridine - GlcNAc N-acetyl-d-glucosamine - Man mannose - Gal galactose - Fuc fucose - Glc glucose - PA-C2 PA-glycolaldehyde - PA-C3 PA-l-glyceraldehyde - PA-C4 PA-d-threose - HPAEC-PAD high performance anion exchange chromatography with pulsed amperometric detector - HPLC high performance liquid chromatography - ODS octadecylsilyl - ES-MS electrospray mass spectrometry - CID collision-induced decomposition  相似文献   

14.
Embryogenic callus was induced from the hypocotyl region of seedlings germinated from immature embryos of orange jessamine (Murraya paniculata (L.) Jack) on Murashige & Tucker (1969) medium containing 50 g l-1 sucrose, 5.0 mg l-1 benzyladenine, 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 600 mg l-1 malt extract. Isolated protoplasts divided to produce callus on Murashige & Tucker (1969) medium containing 50 g l-1 sucrose, 0.01 mg l-1 gibberellin A4+7 and 600 mg l-1 malt extract. Callus developed to plantlets via somatic embryogenesis on Murashige & Tucker (1969) medium with 50 g l-1 lactose but no plant growth regulators. These plantlets flowered in vitro on half strength Murashige & Tucker (1969) medium containing 50 g l-1 sucrose after 2 months culture.Abbreviations BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - FM full strength MT medium - FMG full strength MT medium +1 mg l-1 GA3 - GA3 gibberellin A3 - GA4+7 gibberellin A4+7 - HM half strength MT medium - HMG half strength MT medium +1 mg l-1 GA3 - MT Murashige & Tucker (1969)  相似文献   

15.
The fermentation ofd-arabinose byBacteroides ruminicola strain B14 occurs in a manner similar to or identical with that shown previously forl-arabinose metabolism by the organism, a combination of hexose resynthesis and the Embden-Meyerhof sequence. The use ofd-arabinose by strain B14 was repressed by prior growth in medium containingd-glucose and induced by prior growth in the presence ofl-arabinose ord-xylose. The use ofd-ribose andd-xylose by strain B14 is different from that ford-arabinose. During growth in the presence of 1-14C-d-arabinose, labeled acetate, propionate, and succinate were formed, whereas during 1-14C-d-ribose growth only labeled acetate and propionate were obtained. Under the conditions used,d-xylose growth failed to allow formation of acetate, propionate, or succinate. Strain B14 incorporates label from 1- or 2-labeled glycine into acetate, propionate, and succinate by a mechanism involving the cleavage of glycine and equilibration of glycine carbons 1 and 2 with different metabolic pools.  相似文献   

16.
Abstract

1-O-Acetyl-2-deoxy-3,5-di-O-toluoyl-4-thio-d-erythro-pentofuranose and 2-deoxy-1,3,5-tri-O-acetyl-4-thio-l-threo-pentofuranose were coupled with 5-azacytosine to obtain α and β anomers of nucleosides.  相似文献   

17.
An industrial scale reactor concept for continuous cultivation of immobilized animal cells (e.g. hybridoma cells) in a radial-flow fixed bed is presented, where low molecular weight metabolites are removed via dialysis membrane and high molecular products (e.g. monoclonal antibodies) are enriched. In a new nutrient-split feeding strategy concentrated medium is fed directly to the fixed bed unit, whereas a buffer solution is used as dialysis fluid. This feeding strategy was investigated in a laboratory scale reactor with hybridoma cells for production of monoclonal antibodies. A steady state monoclonal antibody concentration of 478 mg l-1 was reached, appr. 15 times more compared to the concentration reached in chemostat cultures with suspended cells. Glucose and glutamine were used up to 98%. The experiments were described successfully with a kinetic model for immobilized growing cells. Conclusions were drawn for scale-up and design of the large scale system.Abbreviations: cGlc – glucose concentration, mmol l-1; cGln – glutamine concentration, mmol l-1; cAmm – ammonia concentration, mmol l-1; cLac – lactate concentration, mmol l-1; cMAb – MAb concentration, mg l-1; D – dilution rate, d-1; Di – dilution rate in the inner chamber of the membrane dialysis reactor, d-1; D0 – dilution rate in the outer chamber of the membrane dialysis reactor, d-1; q*FB,Glc – volume specific glucose uptake rate related to the fixed bed volume, mmol lFB -1 h-1; q*FB,Gln – volume specific glutamine uptake rate related to the fixed bed volume, mmol lFB -1 h-1.  相似文献   

18.
d-Amino acids are now recognized to be widely present in mammals. In rats, exogenously administered d-methionine is almost converted into the l-enantiomer via 2-oxo-4-methylthiobutylic acid as an intermediate. d-Amino acid oxidase is associated with conversion of d-methionine into the 2-oxo acid. Since d-amino acid oxidase is present at the highest activity in the kidney compared to other organ, kidney injury is suggested to cause accumulation of d-methionine. The purpose of the present study is to assess the role of kidney in the elimination of d-methionine and metabolic conversion into l-methionine in rats using a stable isotope methodology. After a bolus i.v. administration of d-[2H3]methionine to 5/6-nephrectomized rats, plasma concentrations of d-[2H3]methionine, l-[2H3]methionine, and endogenous l-methionine were determined by a stereoselective GC–MS method. Renal mass reduction slowed down the elimination of d-[2H3]methionine. The clearance values of conversion of d-[2H3]methionine into the l-enantiomer in 5/6-nephrectomized rats were one-sixth of those in sham-operated rats. The elimination behavior of d-[2H3]methionine observed in rats demonstrated that kidney was the principal organ responsible for chiral inversion of d-methionine.  相似文献   

19.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

20.
Abstract

Geminal difluorocyclopropane analogues of nucleosides 7a7e were synthesized. Compounds 7a and 7c7e were obtained by alkylation of nucleic acid bases or their appropriate precursors with (cis)-1-benzyloxymethyl-2-bromomethyl-3,3-difluorocyclopropane (8). Analogue 7b was prepared by hydrolysis of 2-amino-6-chloropurine derivative 7e. Compounds 7a7d did not exhibit any antiviral activity against HCMV, HSV-1, HSV-2, EBV, VZV, HBV and HIV-1 or antitumor effects against murine leukemia L1210, mouse tumors PO3 or C38 and human tumor H15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号