首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a–5c) and 2,6-diaminopurines (5d–5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8–10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

2.
Gelpi ME  Cadenas RA  Mosettig J  Zuazo BN 《Steroids》2002,67(3-4):263-267
Steroidal nucleoside analogs were synthesized starting from testosterone. By reduction of the oxime of 17 beta-hydroxy-androst-4-en-3-one (testosterone), a mixture of the two amino epimers of C-3 were obtained. The 3 alpha-amino-androst-4-en-17 beta-ol was crystallized in 73% yield and coupled with 5-amino-4,6-dichloropyrimidine to give 3 alpha-(5'-amino-4'-chloro-pyrimidin-6'-yl)amino-androst-4-en-17 beta-ol. This compound was treated with triethyl orthoformate in acid media to give the corresponding purinyl steroid adduct 3 alpha-(6'-chloro-purin-9'-yl)-androst-4-en-17 beta-ol in 98% yield. This substance, in turn, was converted with good yield into the 6'-thio, 6'-methylamino, and 6'-diethyl aminopurinyl derivatives through nucleophilic reactions at C-6 of the purine nucleus.  相似文献   

3.
Treatment of 2-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)ethanal with malononitrile, cyanoacetamide and 2-cyano-N-(4-methoxyphenyl)acetamide, respectively, in the presence of aluminium oxide yielded 2-cyano-4-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)crotonic acid derivatives. Cyclization with sulfur and triethylamine was performed to synthesize the 2-amino-5-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thiophene-3-carbonic acid derivatives, which were treated with triethyl orthoformate/ammonia and triethyl orthoformate, respectively, to furnish 6-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thieno[2.3-d]pyrimidine derivatives. Deprotection in two steps afforded 2-amino-5-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thiophene-3-carbonitrile and 6-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thieno[2.3-d]pyrimidine derivatives, respectively.  相似文献   

4.
Four new aristololactams have been isolated from Aristolochia argentina. The evidence indicates them to be 10-amino-3-hydroxymethyl-2,4-dimethoxyphenanthrene-1-carboxylic acid lactam, 10-amino-3-hydroxymethyl-2,4,6-trimethoxyphenanthrene-1-carboxylic acid lactam, 10-amino-2-hydroxy-4-methoxyphenanthrene-1,3-dicarboxylic acid lactam and 10-amino-2-hydroxy-4,6-dimethoxyphenanthrene-1,3-dicarboxylic acid lactam.  相似文献   

5.
Cyclobutane analogues of the antiviral cyclopropane nucleoside A-5021 were synthesized from 1-cyano-1,2-bis(methoxycarbonyl)cyclobutane via 1) isolation of both diastereomers by crystallization, 2) reduction to aminodiol, 3) coupling with 2-amino-4,6-dichloropyrimidine, and 4) guanine ring formation. Despite their structural resemblance to A-5021, the compounds were devoid of antiherpetic activity.  相似文献   

6.
Summary. A variety of N-[(4,6-diaryl-3-pyridinecarbonitrile)-2-yl] amino acid esters 2–4 were synthesized through the reaction of 2-bromo-3-pyridinecarbonitriles 1 with the appropriate -amino acid ester hydrochloride in refluxing dioxane in the presence of triethylamine as dehydrohalogenating agent. Similarly, N-glycylglycine analogues 5 were obtained through the reaction of 1 with the dipeptide ester. On the other hand, attempts were made towards the construction of amino acid derivatives 7 through the reaction of 1 with aqueous solution -amino acids 6 in refluxing pyridine, but were unsuccessful, and instead the unexpected 2-amino-3-pyridinecarbonitriles 8 were isolated. The fluorescence properties of the newly synthesized pyridines 25 were evaluated. Some of the prepared compounds show considerable antibacterial activity.  相似文献   

7.
Abstract

The synthesis of carbocyclic nucleosides, cis-9-[4-(1,2-dihydroxyethyl)-cyclopent-2-enyl]guanine (3) and cis-2-amino-6-cyclopropylamino-9-[4-(1,2-dihydroxyethyl)-cyclopent-2-enyl]guanine (4), was achieved from cyclopentadiene (5) in five and six steps, respectively. This route involves a hetero Diels-Alder reaction and a Pd(0)-catalyzed coupling reaction.  相似文献   

8.
Abstract

The syntheses of the pyrimidine analogs 5,5-dihydroxymethyl-2,4,6-pyrimidineytrione I, 2-amino-5,5-dihydroxymethyl-4,6-pyrimidinedione II, 5,5-di(2-hydroxyethyl)-2,4,6-pyrimidinetrione III, and 2-amino-5,5-di(2-hydroxyethyl)-4,6-pyrimidinedione IV are described.  相似文献   

9.
Hatanaka  Shin-Ichi  Furukawa  Jun  Aoki  Toshio  Akatsuka  Hirokazu  Nagasawa  Eiji 《Mycoscience》1994,35(4):391-394
Combining different chromatography systems, unusual nonprotein amino acids were isolated and unequivocally identified from a small amount (less than 100 g fresh weight) ofAmanita gymnopus fruit body. Without obtaining crystals of these amino acids, on the basis of1H-NMR determination, high resolution mass spectrometry, chlorine analysis and oxidation with L-amino acid oxidase, one of them proved to be a new chloroamino acid, (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid (G2). The other three were (2S)-2-amino-5-hexenoic acid (G1), (2S)-2-amino-4,5-hexadienoic acid (G3) and (2S)-2-amino-5-hexynoic acid (G4). Amino acid (G1) was also encountered for the first time in natural products. Amino acid (G3) has been reported from several kinds of fungi belonging toAmanita, subgenusLepidella. The occurrence of amino acid (G4) was already reported fromCortinarius claricolor.Part 23 in the series Biochemical studies of nitrogen compounds in fungi. Part 22, Hatanaka, S. I. et al. 1985. Trans. Mycol. Soc. Japan26: 61–68.  相似文献   

10.
Abstract

A synthesis of 9-(2-deoxy-β-D-ribofuranosyl)purine-2-thione was performed by desulfurization of 2′-deoxy-6-thioguanine to give 2-amino-9-(2-deoxy-β-D-ribofuranosyl)purine, diazotization with chloride replacement to give 2-chloro-9-(2-deoxy-β-D-ribofuranosyl)purine, and the replacement of chloride with sulfur using thiolacetic acid and deacetylation.  相似文献   

11.
The adduct 3-β-D-ribofuranosyl-3,7,8,9-tetrahydropyrimido[1,2-i]purin-8-ol (2), obtained from adenosine and epichlorohydrin, underwent ring fission at basic conditions. The initial ring-opening took place at C2 of the pyrimidine unit resulting in 2-(5-amino-1-β-D-ribofuranosyl-imidazol-4-yl)-1,4,5,6-tetrahydropyrimidin-5-ol (3). Also the tetrahydropyrimidine ring of 3 could be opened resulting in 5-amino-1-(β-D-ribofuranosyl)-imidazole-4-(N-3-amino-2-hydroxyl-propyl)-carboxamide (4). In hot acid conditions, 2 was both deglycosylated and ring-opened yielding 2-(5-amino-imidazol-4-yl)-1,4,5,6-tetrahydropyrimidin-5-ol (7) as the final product. When reacting 3 with CS2 or HNO2 ring-closure took place and 3-β-D-ribofuranosyl-3,4,7,8,9-pentahydropyrimido[1,2-i]purin-8-ol-5-thione (5), and 3-β-D-ribofuranosyl-imidazo[4,5-e]-3,7,8,9-tetrahydropyrimido[1,2-c][1,2,3]triazine-8-ol (6), respectively, were obtained. Also, the pyrimidine ring of the epichlorohydrin adduct with adenine, 10-imino-5,6-dihydro-4H,10H-pyrimido[1,2,3-cd]purin-5-ol (10), underwent ring fission and the product was identified as 3-hydroxy-1,2,3,4-tetrahydroimidazo[1,5-a]pyrimidine-8-carboximidamide (11).  相似文献   

12.
Abstract

The α-glucosidase inhibitor acarbose produced by Actinoplanes sp. SE50/110 is a pseudotetrasaccharide, which consists of an unsaturated cyclitol (carba-sugar), 4-amino-4,6-dideoxyglucose and maltose. The cyclitol (valienol) and the 4-amino-4,6-dideoxyglucose are linked via an N-glycosidic (imino) bond, forming the so-called acarviosyl moiety, which is primarily responsible for the inhibitory effect on α-glucosidases. The gene cluster encoding the biosynthetic genes for the synthesis of acarbose (acb-genes) was sequenced and 25 open reading frames belonging to the acb-gene cluster were identified. Based on the analysis of the enzymes encoded by the acb-cluster, the biosynthesis and ecological role of acarbose is described. The gene cluster includes genes which encode: proteins for the synthesis of the cyclitol; the enzymes for the synthesis of dTDP-4-amino-4,6-dideoxyglucose; glycosyltransferases for the condensation reactions; ATP-dependent exporters and importers; extracellular starch degrading enzymes; and intracellular acarbose modifying enzymes. Acarbose has a dual role for the producer: it inhibits α-glucosidic enzymes of competitors and functions as a carbophor for the uptake of glucose or starch molecules.  相似文献   

13.
A library of novel 5-amino-2,7-diaryl-2,3-dihydrobenzo[b]thiophene-4,6-dicarbonitriles have been synthesized regioselectively in good yields through the one-pot domino reactions of 5-aryldihydro-3(2H)-thiophenones, malononitrile and aromatic aldehydes in the presence of morpholine. This transformation presumably involves Knoevenagel condensation–Michael addition–intramolecular Thorpe–Ziegler cyclization–Tautomerization–Elimination sequence of reactions. These compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity and 5-amino-2,7-bis(4-methoxyphenyl)-2,3-dihydrobenzo[b]thiophene-4,6-dicarbonitrile was found to be the most potent against AChE with IC50 4.16 μmol/L.  相似文献   

14.
Abstract

New analogues of antiviral agents 9-(2, 3-dihy-droxyproply) adenine (DHPA, 1a.) and 9-(2-hydroxyethoxymethyl) guanine (acyclovir, Ib) - compounds Ic and Id were prepared and their biological activity was investigated. Racemic 1, 2, 4-butanetriol (2) was converted to the corresponding benzylidene derivative (3a) by acetalation with benzalde-hyde and triethyl orthoformate. Acetal 3a and p-toluene- sul-fonyl chloride in pyridine gave the corresponding p-toluenes fonate 3b. Alkylation of adenine 5a via sodium salt of 5a with 3b in dimethylformamide or in the presence of tetra-n-butylammonium fluoride in tetrahydrofuran gave intermediate 6a. Reaction of 2-amino-6-chloropurine (5b) with 3b effected by K2CO3 in dimethylsulfoxide gave compound 6b and a smaller amount of 7-alkylated proauct 7. A similar transformation catalyzed by tetra-n-butylammonium fluoride afforded only intermediate 5b. Acid-catalyzed de-protection (hydrolysis) of 6b and 6a gave the title compounds Ic and Id. The S-enantiomer of Ic was deaminated with adenosine deaminase. Our results argue against the presence of a methyl group-binding site of adenosine deaminase. Compounds Ic and Id exhibited little or no activity in antiviral assays with several DNA and RNA viruses.  相似文献   

15.
Three LNA-based mercaptoacetamido-linked nonionic nucleoside dimers TL-S-T, T-S-TL , and TL-S-TL have been synthesized by HOBT and HBTU catalyzed condensation of silyl-protected 2-S-(thymidin-5?′-yl)mercaptoacetic acid or 2-S-(2?′-O,4?′-C-methylenethymidin-5?′-yl)mercaptoacetic acid with 3?′-amino-3?′-deoxy-5?′-O-DMT-2?′-O,4?′-C-methylenethymidine or with 3?′-amino-3?′-deoxy-5?′-O-DMT-β-thymidine followed by desilylation of the protected dimers. The 3?′-O-phosphoramidite derivative of one of the nucleoside dimers was successfully prepared by condensation with [P(-Cl)(-OCH2CH2CN)-N(iPr)2}] in DCM in the presence of N,N-diisopropylethylamine (DIPEA), which is a building block for the preparation of mercaptoacetamido-linked oligonucleotides of therapeutic applications.  相似文献   

16.
《Carbohydrate research》1985,140(1):51-59
The reaction of benzyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-tosyl-α-d-glucopyranoside or benzyl 4,6-O-benzylidene-2,3-benzoylepimino-2,3-dideoxy-α-d-allopyranoside with anhydrous tetrabutylammonium fluoride in hexamethylphosphoric triamide gave ∼40% of benzyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α-d-altropyranoside (6a). Transformation of 6a into benzyl 3-benzamido-2,3,6-trideoxy-2-fluoro-α-d-arabino-hex-5-enopyranoside (13a) was carried out by well-established methodology. Hydrogenation of the double bond in 13a furnished the title compound in good yield. Methyl 3-benzamido-2,3,6-trideoxy-2-fluoro-β-l-galactopyranoside was also prepared in nine steps from 2-amino-2-deoxy-d-glucose.  相似文献   

17.
The methyl ethers of 2-amino-2-deoxy-D-mannose are reference compounds in studies, by the methylation procedure, of the chemical structure of polysaccharides containing 2-amino-2-deoxy-D-mannose and 2-amino-2-deoxy-D-mannuronic acid residues. Methylation of methyl 2-acetamido-2-deoxy-α-D-mannopyranoside (1) gave the 3,4,6-trimethyl ether. Methylation of the 6-trityl ether of 1, followed by detritylation, gave the 3,4-dimethyl ether of 1. Methylation of the 4,6-O-benzylidene derivative (6) of 1, followed by removal of the benzylidene group, gave the 3-methyl ether of 1. Benzoylation of 6, followed by removal of the benzylidene group and monobenzoylation, gave the 3,6-dibenzoate of 1, which was methylated, and the product saponified, to give the 4-methyl ether of 1; the latter compound was also obtained by a similar route via the 3-O-acetyl-6-O-benzoyl derivative.  相似文献   

18.
Abstract

A series of novel (5-amino-3-substituted-1, 2, 4-triazin-6-yl) (2-(6-halo-substituted benzo[d]isoxazol-3-yl) pyrrolidin-1-yl) methanone 5a5r was synthesized. Their anticonvulsant activities were evaluated by the maximal electroshock (MES) test and neurotoxicity was evaluated by the rotorod test. The MES test showed that (5-amino-3-phenyl-1, 2, 4-triazin-6-yl)(2-(6-fluorobenzo[d]isoxazol-3-yl) pyrrolidin-1-yl) methanone 5c was found to be the most potent compound with ED50 value of 6.20?mg/kg (oral/rat) and a protective index (PI?=?ED50/TD50) value of >48.38, which was much higher than the PI of the reference drug phenytoin. To explain the possible mechanism of action of selected derivatives 5b, 5c, 5i and 5o, their influence on sodium channel was evaluated in vitro.  相似文献   

19.
The formation of TNT-derived conjugates was investigated in hairy root tissue cultures of Catharanthus roseus and in aquatic plant systems of Myriophyllum aquaticum. The temporal profiles of four TNT-derived conjugates, TNT-1, 2A-1, TNT-2 and 4A-1, were determined over 3 to 16-day exposure durations. When axenic C. roseus roots were exposed separately to 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, the array and levels of conjugates varied. Exposure of axenic roots to either 4-amino-2,6-dinitrotoluene or 2-amino-4,6-dinitrotoluene resulted in the formation of only 4A-1 and 2A-1, respectively, and not TNT-1 and TNT-2. However, amendment of previously unexposed roots with TNT produced all four conjugates. The conjugates were preferentially accumulated within the biomass phase of root cultures. Significantly, conjugates TNT-1 and TNT-2 were observed in the biomass phase of intact M. aquaticum plants exposed to TNT. The results clearly indicate the presence of common TNT transformation products in two diverse plants species and tissue type. The distribution of conjugates formed via monoamine derivatives of TNT, however, may be a function of several factors, including the starting xenobiotic type and/or level. Initial bulk rate constants for disappearance of 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene were also determined. Their magnitude followed the order: TNT >> 4-A-2,6-DNT > 2-A-4,6-DNT.  相似文献   

20.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号