首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Bis(pivaloyloxymethyl) ester of 2′-azido-2′-deoxyuridine 5′-monophosphate was prepared as a prodrug to generate 2′-azido-2′-deoxyuridine 5′-diphosphate inside the cell. A synthetic route utilizing stannyl phosphate was adopted in the preparation. The prodrug was evaluated for cell growth inhibition against a variety of tumor cell lines along with 2′-azido-2′-deoxyuridine and 2′-azido-2′-deoxycytidine.  相似文献   

2.
Abstract

The molecular conformations of 3′- and 5′-azido and amino derivatives of 5-methoxymethyl-2′-deoxyuridine, 1, were investigated by nmr. The glycosidic conformation of 5-methoxymethyl-5′-amino-2′,5′-dideoxy-uridine, 5 had a considerable population of the syn form. The 5′-derivatives show a preference for the S conformation of the furanose ring as in 1. In contrast, the 3′-derivatives show preference for the N conformation. For 5-methoxymethyl-3′-amino-2′,3′-dideoxyuridine, 3, the shift towards the N state is pH dependent. The preferred conformation for the exocyclic (C4′,C5′) side chain is g+ for all compounds except 5 which has a strong preference for the t rotamer (79%). Compounds 1, 3 and 5 inhibited growth of HSV-1 by 50% at 2, 18 and 70 μg/ml respectively, whereas 2 and 4 were not active up to 256 μg/ml (highest concentration tested). The compounds were not cytotoxic up to 3,000 μM.  相似文献   

3.
Previously reported syntheses of the photoaffinity label 5-azido-2′-deoxyuridine are rather inefficient and involve the tedious preparation of a 5-nitro intermediate. To overcome these inconveniences, we have developed a new approach from the commercially available 5-bromo-2′-deoxyuridine nucleoside. Our synthetic route makes use of a benzylamination reduction sequence. Using this strategy, the 5-azido-2′-deoxyuridine photolabel is prepared in three steps and quantitative yields.  相似文献   

4.
Abstract

Oligodeoxyribonucleotides containing 2′-amino-2′-deoxy-uridine (dU) were synthesized and their ability to form duplexes with complementary DNA or RNA oligonucleotides was studied. Substitution of dU with dU in these oligomers results in lowered Tms of the duplexes.  相似文献   

5.
Abstract

5-Ethyl-2′-deoxyurldine (EDU) is phosphorylated to a much greater extent by herpes simplex virus (HSV)-infected Vero cells than by mock-infected cells. Within the infected cells, EDU is preferentially incorporated into viral DNA and more inhibitory to viral than cellular DNA synthesis  相似文献   

6.
New 5-azole- and 5-oxime-substituted analogues of 2′-deoxyuridine are synthesized. The analogues with azole ring manifest low toxicities and antiherpetic activities on Vero cell culture, the imidazole derivative being the most active. The inhibitory effects of oximes of 5-formyl-deoxyuridine are comparable with those of the azole-containing nucleoside analogues, although their cytotoxicities are found to be higher; oxime of 5-formyldeoxyuridine is particularly toxic. The nucleoside analogues synthesized exhibit no marked activity on cell cultures infected with various variants of poxvirus.  相似文献   

7.
Abstract

2′-Azido-2′-deoxyuridine and 2′-azido-2′-deoxycytidine were evaluated for their inhibitory activity against ribonucleotide reductase and for subsequent cell growth inhibition. Their mono-and di-phosphates were synthesized and their inhibitory activities against the reductase were also determined in a permeabilized cell system, along with the two nucleosides. The results of the present study identify the first phosphorylation step involved in the conversion of the two azidonucleosides to the corresponding diphosphates to be rate-limiting in the overall activation.  相似文献   

8.
Reductive amination of 5-formyl-3′,5′-di-O-acetyl-2′-deoxyuridine with primary amines and sodium triacetoxyborohydride (NaBH(OAc)3) afforded novel enamine derivatives of 5,6-dihydro-2′-deoxyuridine as a result of unexpected 1,4-conjugate reduction of intermediate Schiff bases in addition to the secondary amine derivatives of 2′-deoxyuridine, typical 1,2-reduction products.  相似文献   

9.
Summary The title compounds were prepared by an enzymatic transdeoxyribosylation from 2 dGuo or 2 dThd to the respective heterocyclic bases, 5-ethyluracil and (E)-5-(2-bromovinyl)uracil, using the whole bacterial cells ofEscherichia coli as a biocatalyst.  相似文献   

10.
A series of new 3′-O- and 5′-O-propargyl derivatives of 5-fluoro-2′-deoxyuridine (14) was synthesized by means of propargyl reaction of properly blocked nucleosides (2,4), followed by the deprotection reaction with ammonium fluoride. The synthesized propargylated 5-fluoro-2′-deoxyuridine analogues (14) were evaluated for their cytotoxic activity in three human cancer cell lines: cervical (HeLa), oral (KB) and breast (MCF-7), using the sulforhodamine B (SRB) assay. The highest activity and the best SI coefficient in all of the investigated cancer cells were displayed by 3′-O-propargyl-5-fluoro-2′-deoxyuridine (1), and its activity was higher than that of the parent nucleoside. The other new compounds exhibited moderate activity in all of the used cell lines.  相似文献   

11.
Abstract

Eight new 5-heteroaromatic substituted analogues of 2′-deoxyuridine have been synthesized and evaluated for their inhibitory properties against a panel of different viruses. Several analogues containing a substituted thiophene moiety proved to be highly selective against herpes simplex virus type 1 (HSV-1).  相似文献   

12.
Abstract

(E)-5-(2-lodovinyl)-2′-fluoro-3′-0-(1-methyl-1,4-dihydropyridyl-3-carbonyl)-2′-deoxyuridine (11) was synthesized for future evaluation as a lipophilic, brain-selective, pyrimidine phosphorylase-resistant, antiviral agent for the treatment of Herpes simplex encephalitis (HSE). Treatment of (E)-5-(2-iodovinyl)-2′-fluoro-2′-deoxyuridine (6) with TBDMSCI in the presence of imidazole in DMF yielded the protected 5′-O-t-butyldimethylsilyl derivative (7). Subsequent reaction with nicotinoyl chloride hydrochloride in pyridine afforded (E)-5-(-2-iodovinyl)-2′-fluoro-3′-O-(3-pyridylcarbonyl)-5′-O-t-butyldimethylsily-2′-deoxyuridine (8). Deprotection of the silyl ether moiety of 8 with n-Bu4N+F? and quaternization of the resulting 3′-O-(3-pyridylcarbonyl) derivative 9 using iodomethane afforded the corresponding 1-methylpyridinium salt 10. The latter was reduced with sodium dithionite to yield (E)-5-(2-iodovinyl)-2′-fluoro-3′-O-(1-methyl-1,4-dihydropyridyl-3-carbonyl)-2′-deoxyuridine (11).  相似文献   

13.
Abstract

A novel synthesis of the nucleoside analog, 5′-deoxy-5′-(cyclopropylmethylthio)adenosine (CPMTA, 1) has been developed. CPMTA is a closely related structural analog of 5′-deoxy-5′-(isobutylthio)-adenosine (SIBA, 2), which has been widely studied and shown to exert a multitude of biological effects. The in vitro and in vivo antitumor (L1210 leukemia) activity of CPMTA has been found to be comparable to that of SIBA, whereas its in vitro antiviral (HSV and VSV) activity is diminished. These agents are being developed as inhibitors of methylation and/or polyamine synthesis.  相似文献   

14.
With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2′-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3′,5′-di-O-acetyl-2′-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3′,5′-di-O-pivaloyl-2′-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31–47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.  相似文献   

15.
Abstract

(E)-3′,5′-diamino-5-(2-bromovinyl)-2′,3′,5′-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. In contrast with BVDU, compound 5 did not show activity against herpes simplex virus or varicella-zoster virus.  相似文献   

16.
Novel reagents for the fluorescent labeling of oligo- and polynucleotides have been prepared: 5-(1-pyrenylethynyl)-2′-deoxyuridine 3′-phosphoramidite and a solid support carrying this nucleoside. Oligo-nucleotides containing one or several modified units have been synthesized, and the fluorescence of these probes has been shown to change upon hybridization with the complementary sequence. Fluorescent Nucleosides. III. The previous communications, see [1, 2]. Prefix “d” in the oligodeoxynucleotide designations is omitted.  相似文献   

17.
Abstract

5-Cyclohexyl-2′-deoxyuridine (I) is an example of a 5-substituted pyrimidine 2′-deoxynucleoside which exhibits no antiviral activity and which is not a substrate for either cellular or viral (herpes) kinases. Despite the fact that a cursory inspection of NMR spectra of the compound, taken in DMSO-d 6 solution, suggested that the compound had a normal conformation, we here show that in the crystal and in aqueous solution (analysed by 2D NMR techniques), the conformation of this nucleoside has a syn-glycosidic and C4′-exo (4E) sugar pucker conformation.  相似文献   

18.
Abstract

Self complementary diribonucleoside monophosphates containing 2-aminoadenosine (n2A) and uridine (U) residues, (2′-5′) n2ApU (1), (3′-5′) n2ApU (2), (2′-5′) Upn2A (3) and (3′-5′) Upn2A (4), were synthesized by condensation of suitably protected nucleoside and nucleotide units using dicyclohexylcarbodiimide (DCC). The dimers, (3) and (41, were also obtained from uridine 2′,3′-cyclic phosphate and unprotected 2-aminoadenosine using 2,4,6-triisopropylbenzenesulfonyl chloride (TPS-Cl) as the condensing agent. The conformational properties of these dimers were examined by UV, CD and NMR spectroscopy. The results reveal that the 2′-5′ isomers take a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′ isomers. The n2ApU isomers have more stacked structure than the Upn2A isomers.  相似文献   

19.
Abstract

Comparison of the solution (in CDCl3 at 500 MHz1H NMR) and X-ray crystal studies of 3′-oximinouridine 1 shows in general good agreement with the high anti glycosidic angle and in the conformation about C4′-C5′. The sugar pucker (C2′-endo) is qualititatively identical in both cases. This is the first example of a conformationally sugar-rigid nucleoside in which the rigidity arises from the sp2 character of an endocyclic carbon (i.e. C3′), not from the strain due to the ring fusion (see ref. 7 for conformationally strained nucleosides).  相似文献   

20.
Abstract

Beginning with the treatment of the diacetate of cis-3,5-cyclopentenediol (5) with Pseudomonas cepacia lipase, (-)-5′-noraristeromycin (1) and (-)-7-deaza 5′-noraristeromycin (3) have been prepared. Subjecting 5 to treatment with porcine liver esterase led to an efficient preparation of a substituted cyclopentane precursor which, following literature precedence, can be converted into (-)-5′-homoaristeromycin (4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号