首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Resonance Raman spectra excited at 257 nm are reported for the complexes of the Nickel, Cobalt and Zinc derivatives of Tetrakis(4-N-methylpyridyl)porphine with poly(dA.dT)2, poly(dA)poly(dT), poly(dG.dC)2 and poly(dG).poly(dC). These spectra are interpreted as evidence of multiple outside binding modes with poly(dA).poly(dT), and of evidence for an outside binding mode with Poly(dG.dC)2. Some results obtained for the zinc derivative with poly(dA).poly(dT) suggest a binding mode peculiar to this derivative.  相似文献   

2.
 As an extension of our earlier discoveries that ZnII-cyclen complex (1) (cyclen=1,4,7,10-tetraazacyclododecane) and ZnII-acridine-pendant cyclen complex ZnII-N-(9-acridin)ylmethyl-cyclen (3) are the first compounds to selectively recognize thymidine and uridine nucleosides in aqueous solution at physiological pH, the interaction of these and a relevant complex, bis(ZnII-cyclen) (7), has been investigated with a series of polynucleotides, single-stranded poly(U) and poly(G), and double-stranded poly(A)·poly(U), poly(dA)·poly(dT) and poly(dG)·poly(dC). These ZnII-cyclen complexes interact with the imide-containing nucleobases in the single-stranded poly(U), unperturbed by the presence of the anionic phosphodiester backbone. The affinity constant of 1 for each N(3)-deprotonated uracil base in poly(U) is determined to be log K= 5.1 by a kinetic measurement, which is almost the same as log K=5.2 for the interaction of 1 with uridine. Thus, they disrupt the A-U (or A-T) hydrogen bonds to unzip the duplex of poly(A)·poly(U) or poly(dA)·poly(dT), as demonstrated by lowering of the melting temperatures (T m) of poly(A)·poly(U) and poly(dA)·poly(dT) in 5 mM Tris-HCl buffer (pH 7.6, 10 mM NaCl) with increase in their concentrations. The order of the denaturing efficiency is well correlated with that of the 1 : 1 affinity constants for each complex with uracil or thymine;7>3>1. The comparison of circular dichroism (CD) spectra for poly(A)·poly(U), poly(A), and poly(U) in the presence of 3 has revealed a structural change from poly(A)·poly(U) to two single strands, poly(A) and poly(U), caused by 3 binding exclusively to uracils in poly(U). On the other hand, the acridine-pendant cyclen complex 3, which earlier was found to associate with guanine by the ZnII coordinating with guanine N(7), in addition to the π-π stacking, interacts with guanine in the double helix of poly(dG)·poly(dC) from outside and stabilized the double-stranded structure, as indicated by higher T m. Received: 31 December 1997 / Accepted: 23 February 1998  相似文献   

3.
The binding site and the geometry of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (CoTMPyP) complexed with double helical poly(dA)·poly(dT) and poly(dG)·poly(dC), and with triple helical poly(dA)·[poly(dT)]2 and poly(dC)·poly(dG)·poly(dC)+ were investigated by circular and linear dichroism (CD and LD). The appearance of monomeric positive CD at a low [porphyrin]/[DNA] ratio and bisignate CD at a high ratio of the CoTMPyP-poly(dA)·poly(dT) complex is almost identical with its triplex counterpart. Similarity in the CD spectra was also observed for the CoTMPyP-poly(dG)·poly(dC) and -poly(dC)·poly(dG)·poly(dC)+ complex. This observation indicates that both monomeric binding and stacking of CoTMPyP to these polynucleotides occur at the minor groove. However, different binding geometry of CoTMPyP, when bind to AT- and GC-rich polynucleotide, was observed by LD spectrum. The difference in the binding geometry may be attributed to the difference in the interaction between polynucleotides and CoTMPyP: in the GC polynucleotide case, amine group protrude into the minor groove while it is not present in the AT polynucleotide.  相似文献   

4.
Oligodeoxynucleotides covalently linked to cellulose were used as probes of the DNA-binding domains of mouse steroid holoreceptors. With uterine cytosol estrogen receptor (E2R) the relative binding order, in prior studies, was oligo(dG) > oligo(dT) ≧ oligo(dC) > > oligo(dA) > oligo(dI). The binding reactions were salt-sensitive with an optimal KCl concentration of 0.1–0.2 M. There was no enhancement of binding by activation, either temperature- or salt-induced. In the present study, using the oligomer ligands at a lower concentration, oligo(dT) binding was greater than that to oligo(dC). Quantitative differences in oligodeoxynucleotide binding were elicited by a number of inhibitors. These differences are again seen by exposure of E2R to chaotropic salts such as SCN?, ClO4? and NO3? as well as to putative modifiers of receptor amino acids, ie, iodoacetamide, 1,2 cyclohexanedione, and Rose Bengal. These results, and the quantitative differences following heat and purification, led to a designation of two types of subsites within the DNA-binding domain of uterine E2R. These are stable G sites, which interact with oligo(dG); and labile N sites, which bind to oligo(dT), oligo(dC) and oligo(dA). Stimulation of binding to N sites and stabilization of the holoreceptor was effected by histones H2A and H2B. However, the differential response to incubation at 37°C was not altered by addition of H2B. Treatment of uterine E2R by limited proteolysis also eliminated the stimulatory response to H2B. The above data, as well as prior studies, indicate that steroid holoreceptors can discriminate between the structural features of deoxynucleotide bases and this recognition process can be modulated by accessory proteins.  相似文献   

5.
6.
Mitochondria are major cellular targets of benzo[a]pyrene (BaP), a known carcinogen that also inhibits mitochondrial proliferation. Here, we report for the first time the effect of site-specific N2-deoxyguanosine (dG) and N6-deoxyadenosine (dA) adducts derived from BaP 7,8-diol 9,10-epoxide (BaP DE) and dA adducts from benzo[c]phenanthrene 3,4-diol 1,2-epoxide (BcPh DE) on DNA replication by exonuclease-deficient human mitochondrial DNA polymerase (pol γ) with and without the p55 processivity subunit. The catalytic subunit alone primarily misincorporated dAMP and dGMP opposite the BaP DE–dG adducts, and incorporated the correct dTMP as well as the incorrect dAMP opposite the DE–dA adducts derived from both BaP and BcPh. In the presence of p55 the polymerase incorporated all four nucleotides and catalyzed limited translesion synthesis past BaP DE–dG adducts but not past BaP or BcPh DE–dA adducts. Thus, all these adducts cause erroneous purine incorporation and significant blockage of further primer elongation. Purine misincorporation by pol γ opposite the BaP DE–dG adducts resembles that observed with the Y family pol η. Blockage of translesion synthesis by these DE adducts is consistent with known BaP inhibition of mitochondrial (mt)DNA synthesis and suggests that continued exposure to BaP reduces mtDNA copy number, increasing the opportunity for repopulation with pre-existing mutant mtDNA and a resultant risk of mitochondrial genetic diseases.  相似文献   

7.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

8.
Corticosteroid binder IB, present in liver and kidney, is pronounced in liver cytosol after injection of [3H]triamcinolone acetonide. Following injection of the radioactive ligand, livers homogenized in the presence of 20 mm molybdate, 2 mm leupeptin hemisulfate, 2 mm antipain, or 2 mm phenylmethylsufonyl fluoride produce cytosols with Chromatographie profiles of binders II and IB identical to controls, as determined by DEAE-Sephadex chromatography, suggesting that IB is a cellular constituent rather than a product of protease action (sensitive to the above inhibitors) after cell breakage. Generation of IB in kidney cytosols in vitro appears to be unrelated to protease activity. Liver binder IB has an S value of 5–6 and a Stokes radius of about 26 Å producing a calculated range of molecular weight from 40,000 to 50,000 with frictional coefficient and axial ratio close to spherical values. As expected of a steroid receptor, IB, like II, binds to DNA and to liver cell nuclei but IB binds more tightly as evidenced by the fact that KCl is more effective in eluting II than IB from nuclei. Because recovery of bound radioactivity from acceptors is sometimes difficult to achieve, indirect experiments have been used frequently to determine the binding. Pyridoxal phosphate extracts liver IB and II equally from nuclei but spermidine is ineffective. While IB and II can be extracted partially from nuclei by pancreatic DNase I, more binder II is extracted by this method than IB. Micrococcal nuclease is poorly effective in either case. Binder II is extracted to a greater degree from DNA-cellulose than is IB by spermidine, MgCl2, pyridoxal phosphate, and NaCl. IB binds more extensively to homodeoxypolymers than II. The extent of binding of liver IB to homodeoxypolymers is in the order: poly(dC) ≥ poly(dG) > poly(dA) ? poly(dT), whereas the order for liver binder II is: poly(dG) ≥ poly(dT) > poly(dC) ? poly(dA). Binders IB and II may be separate gene products or IB may arise in the cell from post-translational action. In the latter case, the activity of a protease cannot be ruled out.  相似文献   

9.
The reversible conformational change of DNAs and polydeoxyribonucleotides occurring before melting was followed by circular dichroism. Δθ/δT, the rate of change of ellipticity θ with temperature, was used mainly as a measure of this premelting phenomenon. If sodium ions were replaced by tetramethylammonium ions Δθ/δT decreased for poly (dA) poly (dT) and poly (dA.dT) poly (dT.dA), but increased for poly (dG.dC) poly (dC.dG). DNAs of different base composition showed no more premelting (Δθ/ΔT ~ 0) even at low molarities of TMACl provided the Na/TMA ratio was very small. For all cases studied the θ values at 0°C and at a given ionic strength were smaller in NaCl than in TMACl. When studying the series of ammonium ions from NH+4 to (C2H5)4,N+ the Δθ/ΔT values first decreased, going through zero with TMA+ io and then increased again. A tentative and qualitative explanation of our results can be given: (a) Hydration of the polymers increases in presence of TMA ions and their average stability decreases; locally, however, (AT) pairs are preferentially stabilized by TMA ions owing to a specific interaction at the level of O2 of thymine. (b) In order to explain the different behaviour of (AT) polymers and DNA, it is assumed that only the B structure is able to accommodate TMA ions in the small groove of the double stranded helix.  相似文献   

10.
8-Hydroxydeoxyguanosine (oh8dG) treatment induced senescence-like changes in KG-1 cells, a human acute myelocytic leukemia cell line. The oh8dG-treated cells stained positive for senescence associated β-galactosidase (SA-β-galactosidase) and had enlarged cell shape, both of which are senescence indexes. The oh8dG-treated cells were also cell growth inhibited and arrested at G1 in the cell cycle. The accumulation of cdk (cyclin dependent kinase) inhibitors, such as p16, p21, and p27, also implies that cellular senescence was induced in oh8dG-treated cells. However, these changes were not accompanied by cell differentiation or telomerase activity. Taken together, we conclude that oh8dG treatment of KG-1 cells induces cellular senescence.  相似文献   

11.
Human DNA polymerase ι (polι) is a Y-family polymerase whose cellular function is presently unknown. Here, we report on the ability of polι to bypass various stereoisomers of benzo[a]pyrene (BaP) diol epoxide (DE) and benzo[c]phenanthrene (BcPh) DE adducts at deoxyadenosine (dA) or deoxyguanosine (dG) bases in four different template sequence contexts in vitro. We find that the BaP DE dG adducts pose a strong block to polι-dependent replication and result in a high frequency of base misincorporations. In contrast, misincorporations opposite BaP DE and BcPh DE dA adducts generally occurred with a frequency ranging between 2 × 10–3 and 6 × 10–4. Although dTMP was inserted efficiently opposite all dA adducts, further extension was relatively poor, with one exception (a cis opened adduct derived from BcPh DE) where up to 58% extension past the lesion was observed. Interestingly, another human Y-family polymerase, polκ, was able to extend dTMP inserted opposite a BaP DE dA adduct. We suggest that polι might therefore participate in the error-free bypass of DE-adducted dA in vivo by predominantly incorporating dTMP opposite the damaged base. In many cases, elongation would, however, require the participation of another polymerase more specialized in extension, such as polκ.  相似文献   

12.
Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A) stimulates DNA synthesis in Xenopus laevis oocytes in the presence of activated DNA as template. Besides Ap4A, other analogues such as Ap3A, ATP and other derivatives are able to stimulate DNA polymerase activity. The effect of Ap4A on DNA synthesis is observed with poly(dT) and poly(dT)-poly(dA) as templates, while no effect is found with poly(dA)(dT)12–18 and poly(dC)(dG)12–18. In the presence of a poly(dT) template, the oocyte extract is able to utilize Ap4A as primer and to form a covalent bond between this dinucleotide and the nascent poly(dA) chain. An Ap4A-binding protein present in the system has been purified and separated from DNA polymerase α-primase after phosphocellulose chromatography. After this separation, Ap4A is no longer able to stimulate the polymerase activity, or to be utilized as primer by DNA polymerase α-primase.  相似文献   

13.
A series of 4-amino-5-((4-chlorophenyl)diazenyl)-6-(alkylamino)-1-methylpyrimidin-2-one deri- vatives 7–16 were prepared by nucleophilic displacement of 6-chloro-pyrimidine 6 by various amines. 4-Amino-5-((aryl-4-yl)diazenyl)-6-aryl-1-methylpyrimidin-2-one analogs 19–27, as well as 4-amino-5-((aryl-[1,1′-biphenyl]-4-yl)diazenyl)-6-aryl-1-methylpyrimidin-2-one 29–31 and 4-amino-6-aryl-1-methylpyrimidin-2-one 34–34, were synthesized via Suzuki cross-coupling reaction, using Pd(PPh3)4 as a catalyst and arylboronic acids as reagents. All compounds were evaluated for their antiviral activity against the replication of HIV-1 and HIV-2 in MT-4. Compounds 6, 16, 27, and 29 showed a 50% effective concentration of >2.15, >3.03, >2.29, and >1.63 μM, respectively, but no selectivity was observed (selectivity index < 1). Two of the newly synthesized pyrimidines 12 and 29 exhibited moderate kinesin Eg5 inhibition.  相似文献   

14.
Abstract

We have determined the 1H→3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT)·poly(dA-dT), poly(dG-dC)·poly(dG- dC) and poly(dA-dC)·poly(dG-dT) as well as homopolynucleotides poly(dA)·poly(dT) and poly(dG)·poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4–6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25°C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E.coli DNA, dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution.

Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT)·poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating “wrinkled” DNA model. The conformations of poly(dG-dC)·poly(dG-dC) and poly(dA-dC)·poly(dG-dT), according to the exchange data obtained, are within the B form. For homopolynucleotides in 0.15 M NaCl, the kA value for poly(dA)·poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG)·poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B? A conformation equilibrium for poly(dG)·poly(dC) in solution.

The increase of NaCl concentration to 3 M results in a B→Z transition in the case of poly(dG-dC)·poly(dG-dC) and in the shift of B?A equilibrium towards the A-form in the case of poly(dG)·poly(dC), as is evidenced by alterations of their KG values. Poly(dA-dT)·poly(dA-dT) in 6 M CsF and poly(dA-dC)·poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the “X-type” CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA)·poly(dT) in 6 M CsF corresponds to the “heteronomous” DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

15.
The impuritiy profiles of acetonitrile solutions of the four standard O‐cyanoethyl‐N,N‐diisopropyl‐phosphoramidites of 5′‐O‐dimethoxytrityl (DMT) protected deoxyribonucleosides (dGib, dAbz, dCbz, T) were analyzed by HPLC‐MS. The solution stability of the phosphoramidites decreases in the order T, dC>dA>dG. After five weeks storage under inert gas atmosphere the amidite purity was reduced by 2% (T, dC), 6% (dA), and 39% (dG), respectively. The main degradation pathways involve hydrolysis, elimination of acrylonitrile and autocatalytic acrylonitrile‐induced formation of cyanoethyl phosphonoamidates. Consequently, the rate of degradation is reduced by reducing the water concentration in solution with molecular sieves and by lowering the amidite concentration. Acid‐catalyzed hydrolysis could also be reduced by addition of small amounts of base.  相似文献   

16.
Base pairing equilibria between polynucleotides and complementary monomers   总被引:4,自引:0,他引:4  
R J Davies  N Davidson 《Biopolymers》1971,10(9):1455-1479
Equilibrium dialysis measurements and optical melting curve data have been used to study the formation and stability of a number of complexes between polynucleotides and complementary monomers. The cooperativity parameter, (dθ/d ln c)θ = 0.5, where θ is the fraction of U or C residues complexed, and c is the concentration of free monomer has been measured as 1.4 for the 2:1 poly U:d-adenosine-complex, and 2.05 for the 2:1 poly C:d-guanosiue complex at pH 7. The variation of Tm with c for several complexes has been used to calculate their partial molar enthalpies of formation at the midpoint of the transition: in 1.0 MNa + at pH 7, for the 2:1 complex of poly-U with 2-amino-adenine, this is ? 18.7 kcal/mole of 2-amino-adenine, for poly-U with adenosine it is ? 18.7 kcal/ mole; for poly-C with dG, it is ? 16.8 kcal/mole. These results do not agree very well with calorimetric integral heats of reaction reported in the literature.33 Complexes with random copolymers were also studied. The random copolymer, poly-UC, can form a mixed complex with dG and either dA or 2-amino-adenosine; the binding of dG is enhanced by an adenine derivative and vice versa.Similarly, poly AC can form a mixed complex with dG and 3-methyl-xanthine. In each case, it appears that the ideal composition is a 2:1 hydrogen-bonded complex, but the actual stoichiometry is such that each base on the random polynucleotide binds less than one-half of a molecule of its complementary monomer. Poly UG can bind dG and dA, but in a less cooperative and specific way.  相似文献   

17.

Background

Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking.

Methodology/Principal Findings

Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay.

Conclusions/Significance

Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.  相似文献   

18.
The plasma membrane H+-ATPase pump (Pma1p) has been proposed as a viable target for antifungal drugs since this high capacity proton pump plays a critical role in the intracellular regulation of pH and in nutrient uptake of yeast and other fungi. In recent years, this and other laboratories have verified that the antifungal activity of 2-phenylbenzisoselenazol-3(2H)-one, an organoselenium compound commonly referred to as ebselen (1), stems, at least in part, from its inhibitory action on the fungal Pma1p. In the present study, the antifungal efficacy of 2-(3-pyridinyl)-benzisoselenazol-3(2H)-one (2) and 2-phenylbenzisoselenazol-3(2H)-one 1-oxide (3), two ebselen analogs, was evaluated using a strain of S. cerevisiae and compared against that of 1. In addition, the study also examined the inhibitory potential of these three compounds toward the Pma1p of S. cerevisiae. Based on mean IC50 values, the antifungal potency was found to decrease in the order 3?>?1?>?2. However, in terms of inhibitory action on Pma1p, the potency decreased in the order 1?>?3?>?2. The magnitude of these activities appears to be correlated with the corresponding log P values, with compound 2 being the most hydrophilic and the least active of the three.  相似文献   

19.
The interaction of the Cu(II) drugs CuL(NO3) and CuL′(NO3) (HL is pyridine-2-carbaldehyde thiosemicarbazone and HL′ is pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, in water named [CuL]+ and [CuL′]+) with [poly(dA–dT)]2, [poly(dG–dC)]2, and calf thymus (CT) DNA has been probed in aqueous solution at pH 6.0, I = 0.1 M, and T = 25 °C by absorbance, fluorescence, circular dichroism, and viscosity measurements. The results reveal that these drugs act as groove binders with [poly(dA–dT)]2, with a site size n = 6–7, whereas they act as external binders with [poly(dG–dC)]2 and/or CT-DNA, thus establishing overall electrostatic interaction with n = 1. The binding constants with [CuL′]+ were slightly larger than with [CuL]+. The title compounds display some cleavage activity in the presence of thiols, bringing about the rupture of the DNA strands by the reactive oxygen species formed by reoxidation of Cu(I) to Cu(II); this feature was not observed in the absence of thiols. Mutagenic assays performed both in the presence and in the absence of S9 mix, probed by the Ames test on TA 98, TA 100, and TA 102, were negative. Weak genotoxic activity was detected for [CuL]+ and [CuL′]+, with a significative dose–response effect for [CuL′]+, which was shown to be more cytotoxic in the Ames test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assays. Methylation of the terminal NH2 group enhances the antiproliferative activity of the pyridine-2-carbaldehyde thiosemicarbazones.  相似文献   

20.
Jain SS  Polak M  Hud NV 《Nucleic acids research》2003,31(15):4608-4615
Small molecules that intercalate in DNA and RNA are powerful agents for controlling nucleic acid structural transitions. We recently demonstrated that coralyne, a small crescent-shaped molecule, can cause the complete and irreversible disproportionation of duplex poly(dA)·poly(dT) into triplex poly(dA)·poly(dT)·poly(dT) and a poly(dA) self- structure. Both DNA secondary structures that result from duplex disproportionation are stabilized by coralyne intercalation. In the present study, we show that the kinetics and thermodynamics of coralyne-driven duplex disproportionation strongly depend on oligonucleotide length. For example, disproportionation of duplex (dA)16·(dT)16 by coralyne reverts over the course of hours if the sample is maintained at 4°C. Coralyne-disproportioned (dA)32· (dT)32, on the other hand, only partially reverts to the duplex state over the course of days at the same temperature. Furthermore, the equilibrium state of a (dA)16·(dT)16 sample in the presence of coralyne at room temperature contains three different secondary structures [i.e. duplex, triplex and the (dA)16 self-structure]. Even the well-studied process of triplex stabilization by coralyne binding is found to be a length-dependent phenomenon and more complicated than previously appreciated. Together these observations indicate that at least one secondary structure in our nucleic acid system [i.e. duplex, triplex or (dA)n self-structure] binds coralyne in a length-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号