首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process.  相似文献   

2.

Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626–629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3Ado), neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in the first place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.  相似文献   

3.
Abstract

The R- and S-isomers of 6′-C-neplanocin A analogues, which are all known as inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase, were studied for their inhibitory effects on Human Immunodeficiency Virus type 1 (HIV-1) replication and HIV-1 Tat-mediated transactivation. The R-isomers showed much greater activity against AdoHcy hydrolase than the S-isomers. The same differential activity was observed against the HIV-1 replication and the Tat transactivation.

  相似文献   

4.
A large number of nucleoside analogs have been found to inactivate S-adenosylhomocysteine (AdoHcy) hydrolase in a time-dependent irreversible manner. There are two classes of these irreversible inhibitors: (A) analogs that inactivate the enzyme in a pseudofirst-order process and are devoid of any side chain at the 5′-OH group; (B) analogs that inactivate the enzyme in a time-dependent but curvilinear process, and generally have a side chain at the 5′ position. Among the more potent irreversible inhibitors are 2-chloroadenosine, 9-β-d-arabinofuranosyladenine (Ara-A), and (±)aristeromycin. Release of adenine base from adenosine or Ara-A in the presence of AdoHcy hydrolase was observed, thus supporting the proposed catalytic mechanism of AdoHcy hydrolase, that entails the transient formation of 3′-ketoadenosine during enzymatic catalysis of either the formation or hydrolysis of AdoHcy. Both Ara-A and adenosine may exert their irreversible inactivation by a suicide mechanism, but nucleosides such as 5′-iodo-5′-deoxyadenosine and 3′-deoxyadenosine are probably strictly irreversible inhibitors per se in view of the catalytic mechanism proposed for AdoHcy hydrolase. Labeling of AdoHcy hydrolase, perhaps covalent in nature, by radioactive Ara-A and adenosine was demonstrated by gel electrophoresis.  相似文献   

5.
5′-Deoxy-5′-S-allenylthioadenosine 1 and 5′-deoxy-5′-S-propnylthioadenosine 2, derived from adenosine, were prepared. 1 and 2 caused irreversible inactivation of AdoHcy hydrolase. ESI mass spectra analysis of the inactivated enzyme demonstrated that 1 and 2 were type II “mechanism-based” inhibitors.  相似文献   

6.
Fluorinated analogs of 2′- and 3′-deoxy-5′-methylthioadenosine 1–4 caused irreversible inactivation of AdoHcy hydrolase. Based on the ESI-Mass spectra analysis of the inactivated enzyme with the fluorinated analog 1 a mechanism of inactivation is proposed.  相似文献   

7.
Abstract

Vinylogously extended deoxyeritadenine derivatives were synthesized as acyclic/carbocyclic analogues of the 6′-halo(homovinyl)adenosines, which are known to be potent inhibitors of S-adenosyl-L-homocysteine hydrolase. Swern oxidation of 9-[3-(t-butyldimethylsilyloxy)-4-hydroxybutyl]adenine (4) followed by Wittig olefination and desilylation gave access to ethyl 6-(adenin-9-yl)-4-hydroxy-2(E)-hexenoate (7) and 5-(adenin-9-yl)-1,1-dibromo-1-penten-3-ol (9). No inhibition of AdoHcy Hydrolase was observed with 7 and 9.  相似文献   

8.
We report the kinetics and molecular properties of CD38 purified from bovine lung microsomal membranes after its solubilization with Triton X-100. The enzyme was found to be a novel member of a multicatalytic NAD+-glycohydrolase (NADase, EC 3.2.2.6). It was able to utilize NAD + in different ways, producing nicotinamide (Nam) and either adenosine diphosphoribose (ADPR, NADase activity) or cyclic ADPR (cADPR, cyclase activity); it also catalyzed the hydrolysis of cADPR to ADPR (cADPR, hydrolase activity). In addition, the enzyme catalyzed the pyridine base exchange reaction with conversion of NAD + into NAD analogues. These data are evidence that CD38 is involved in the regulation of both NAD+ and calcium-mobilizing agents, the concentration resulting in an essential enzyme that plays a key role in cellular energy and signal-transduction systems.  相似文献   

9.
The gene encoding S-adenosylhomocysteine (AdoHcy) hydrolase in Leishmania donovani was subcloned into an expression vector (pPROK-1) and expressed in Escherichia coli. Recombinant L. donovani AdoHcy hydrolase was then purified from cell-free extracts of E. coli using three chromatographic steps (DEAE-cellulose chromatofocusing, Sephacryl S-300 gel filtration, and Q-Sepharose ion exchange). The purified recombinant L. donovani enzyme exists as a tetramer with a molecular weight of approximately 48 kDa for each subunit. Unlike recombinant human AdoHcy hydrolase, the catalytic activity of the recombinant L. donovani enzyme was shown to be dependent on the concentration of NAD+ in the incubation medium. The dissociation constant (Kd) for NAD+ with the L. donovani enzyme was estimated to be 2.1 +/- 0.2 microM. The Km values for the natural substrates of the enzyme, AdoHcy, Ado, and Hcy, were determined to be 21 +/- 3, 8 +/- 2, and 82 +/- 5 microM, respectively. Several nucleosides and carbocyclic nucleosides were tested for their inhibitory effects on this parasitic enzyme, and the results suggested that L. donovani AdoHcy hydrolase has structural requirements for binding inhibitors different than those of the human enzyme. Thus, it may be possible to eventually exploit these differences to design specific inhibitors of this parasitic enzyme as potential antiparasitic agents.  相似文献   

10.
The chirality of eschscholtzxanthin (all-trans (3S,3′S)-4′,5′-didehydro-4,5′-retro-β,βcarotene-3,3′-diol) at 3,3′ was assigned from the CD correlation of the natural material and the semi-synthetic carotenoid prepared by (NBS-dehydrogenation of natural zeaxanthin ((3R,3′R)-β,β-carotene-3,3′-diol). The δ6(6′)-trans configuration followed from 1H NMR evidence, including nuclear Overhauser experiments with rhodoxanthin, retrodehydro-carotene (4′,5′-didehydro-4,5′-retro-β,β-carotene) and smaller retro model compounds revealing a general preference for the δ6-trans configuration in retro compounds. Biosynthetic considerations are made.  相似文献   

11.
Abstract

The 6′-carboxylic acid derivative of neplanocin A 3 was synthesized from NPA, and was converted to the corresponding methyl ester 4 and amides 5 and 6. These were evaluated for their anti-RNA-virus activities. Of the derivatives synthesized, only 5 was active against RNA viruses within the concentration range of 0.14-4.88 μg/mL. Compounds 3 and 5 showed a potent inhibitory effect on S-adenosylhomocysteine (AdoHcy) hydrolase from rabbit erythrocytes. Although a close correlation between the inhibitory effect of adenosine analogues on AdoHcy hydrolase and their antiviral potency has been demonstrated, 3 did not show any anti-RNA-virus activities.

  相似文献   

12.
Aphanothece halophytica, a halophilic cyanobacterium capable of growing in saturated NaCl, accumulates high intracellular concentrations of glycinebetaine in response to increasing environmental NaCl. In this organism, intracellular levels of K+ rise dramatically with increasing external NaCl before an increase in glycinebetaine can be detected. Glycinebetaine synthesis requires three S-adenosylmethionine (AdoMet)-mediated transmethylations; each transmethylation reaction generates one molecule of the transmethylation inhibitor S-adenosylhomocysteine (AdoHcy). Thus, glycinebetaine synthesis should require continued removal of AdoHcy. In A. halophytica, catabolism of AdoHcy was shown to occur via the reversible reaction catalyzed by AdoHcy hydrolase (EC 3.3.1.1). Activity of AdoHcy hydrolase in the direction of synthesis of AdoHcy was inhibited by 0.4 M KCl in this organism. On the other hand, activity of AdoHcy hydrolase in the direction of AdoHcy hydrolysis was unaffected by 0.4 M KCl. Glycinebetaine increased synthesis of AdoHcy in the presence of 0.4 KCl, but had no effect on AdoHcy hydrolysis. Based upon these results, a mechanism is proposed for the regulation of glycinebetaine synthesis by K+ and glycinebetaine in A. halophytica. According to this mechanism, the regulatory response would be initiated by a K+-induced shift in the AdoMet/AdoHcy ratio.Abbreviations AdoMet S-adenosylmethionine - AdoHcy S-adenosyl homocysteine  相似文献   

13.
2′-O-Methylribonucleosides (2′-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2′-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2′-O-methyluridine (2′-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2′-OMe-UR to 2′-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s?1, and kcat/Km of 12 mM?1 s?1. In a substrate specificity analysis, LbNH preferred ribonucleosides and 2′-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2′-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes.  相似文献   

14.
Abstract

Evidence is presented that 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-adenine (1) is oxidized to the 3′-ketonucleoside 2 with concomitant reduction of NAD+ to NADH by S-adenosylhomcysteine hydrolase. We also describe how the carbocyclic nucleoside I has been used to reveal the metabolic relationships between Sadenosylmethionine, S-adenosylhomocysteine and homocystcine in murine L-929 cells.  相似文献   

15.
Abstract

Several 2′,3′-dideoxynucleosides have proven to be effective against HIV-1 in cell culture. The 2′,3-unsaturated analogues dideoxycytidinene (D4C) and dideoxythymidinene (D4T) are among the most potent and selective inhibitors of HIV-1 replication in vitro. However, 2′,3′-didehydro-2′,3′-dideoxynucleosides are relatively unstable. A chlorine substituent at the 2′-position increases the stability, and, therefore, some 2′-chloro-2′,3′-didehydro-2′,3′-dideoxynucleosides were synthesized and evaluated for anti-HIV-1 activity.  相似文献   

16.
Aims: Alcaligenes sp. NBRC 14130 was found as a strain hydrolysing a mixture of (±)‐trans‐ and (±)‐cis ethyl chrysanthemates to (1R,3R)‐(+)‐trans‐chrysanthemic acid. The Alcaligenes cells also have hydrolytic activity for 6‐aminohexanoate‐cyclic dimer (6‐AHCD, 1,8‐diazacyclotetradecane‐2,9‐dione). The correlation of function on the enzyme from the Alcaligenes strain with hydrolysis activities for both ethyl chrysanthemate and 6‐AHCD was demonstrated. Methods and Results: The esterase was purified to homogeneity. The purified esterase hydrolysed 20 mmol l?1 ester including the four stereoisomers to the corresponding (+)‐trans acid with a 37% molar conversion of ethyl (+)‐trans chrysanthemate. The esterase showed high hydrolytic activity for various short‐chain fatty acid esters, n‐hexane amide and 6‐AHCD. The amino acid sequence of the Alcaligenes esterase was identical to that of Arthrobacter 6‐AHCD hydrolase (EC 3.5.2.12) and similar to that of fatty acid amide hydrolase (EC 3.5.1.4) from Rattus norvegicus, having both serine and lysine residues of the catalytic site and the consensus motif Gly‐X‐Ser‐X‐Gly. Conclusion: The stereo‐selective hydrolytic activity was found in Alcaligenes sp. NBRC14130 by screening of ethyl chrysanthemate‐hydrolysing activity in micro‐organisms, and the purified esterase also acted on fatty acid esters and amides. Significance and Impact of the Study: This study has demonstrated that there are great differences in the enzymatic properties, amino acid sequence and catalytic motif of esterases in both Alcaligenes and Arthrobacter globiformis with excellent stereo‐selectivity for (+)‐trans‐ethyl chrysanthemate, but the amino acid sequence of Alcaligenes esterase is identical to that of Arthrobacter 6‐AHCD hydrolase.  相似文献   

17.

Since the discovery of 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-didehydro-2′,3′-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2′,3′-didehydro-2′,3′-dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T. The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

18.
The formate dehydrogenase from the yeast Pichia pastoris IFP 206 was purified to homogeneity. The protein showed a molecular weight of 68,000 daltons and was composed of two identical subunits. Its amino acid composition was similar to those of other formate dehydrogenases and was characterized by a high content of acidic residues. The N-terminal end of the molecule was probably blocked.

The enzyme activity was NAD+ dependent (NADP+ could not replace NAD+). Its optimum temperature was 47°C and the activation energy 10.8 kcal/mol. The enzyme was active from pH 3.5 to 10.5 with a maximum at pH 7.5. The Michaelis constant for NAD+ and formate were respectively 0.27 and 15mM. The purified enzyme had no S-formylglutathione hydrolase activity, strongly suggesting that the true substrate was formate. NADH, cyanide and azide were strong inhibitors of the enzyme.  相似文献   

19.
Various ribonucleoside 2',3'-dialdehydes, including adenosine dialdehyde, S-adenosylhomocysteine (AdoHcy) dialdehyde, and 5-(methylthio)-5'-deoxyadenosine (MTA) dialdehyde, were shown to be potent inhibitors of bovine liver AdoHcy hydrolase (EC 3.3.1.1). These ribonucleoside 2',3'-dialdehydes produce both time-dependent and concentration-dependent inactivation of the AdoHcy hydrolase. The inactivation appears to be irreversible since the enzyme activity cannot be recovered after prolonged dialysis against phosphate buffer. However, a substantial percentage of the enzyme activity could be recovered when the inactivated enzyme was dialyzed against a nitrogen buffer [e.g., tris(hydroxymethyl)aminomethane (Tris)]. This reversal of inhibition could be prevented, however, by pretreatment of the ligand-enzyme complex with sodium borohydride prior to dialysis in Tris buffer. Inclusion of substrates (e.g., adenosine or AdoHcy) afforded protection of the enzyme from the inactivation induced by the ribonucleoside 2',3'-dialdehydes. These data suggest that the bond formed between the enzyme and the inhibitor is probably a Schiff base linkage between the aldehydic functionality of the inhibitor and a protein lysinyl residue in or around the adenosine-AdoHcy binding site. When [2,8-3H]adenosine dialdehyde was used, a stoichiometry of 1.73 nmol of inhibitor bound per nmol of AdoHcy hydrolase was determined. Analysis of the kinetics of enzyme inactivation using the Ackermann-Potter approach indicates that adenosine dialdehyde is a tight-binding inhibitor, exhibiting a stoichiometry of one to two molecules of inhibitor bound to one molecule (tetramer) of enzyme and a Ki = 2.39 nM.  相似文献   

20.
Abstract

- The 4-amino-1-(2.3-dideoxy-β-D-glycero-pent-2-enofurano-syl)-1H-irnidazo[4,5-c]pyridine (1) and 4-amino-1-(2,3-dideoxy-β-D-gfycero-pentofuranosyl)-1H-imidazo[4,5-c]pyridine (2), 3-deaza analogues of the anti-HIV agents 2′.3′-didehydro-2′,3′-dideoxyadenosine (d4A) and 2′,3′-dideoxy-adenosine (ddA), have been synthesized. The reaction of 3-deazaadenosine (3) with 2-acetoxyisobutyryl bromide yielded a mixture of cis and trans 2′,3′-ha-lo acetates which was convertcd into olefinic nucleoside (1) on treatment with a Zn/Cu couplc and then with methanolic ammonia. The 2′,3′-dideoxy-3-deazaadenosine (2) was obtained by catalytic reduction of 1. A number of phosphate triester derivatives of 2 have also been prepared. The diethyl-, dipropyl- and dibutylpliospliates 7a-c and 3-deazaadenosine have shown anti-HIV activity at non-cytotoxic doses. Compounds 7a-c have also shown significant cytostatic activity against murine colon adenocarcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号