首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Selective radiolabelling and imaging of transduced HSV tk expressing cells was studied using [123I]IVFRU, [125I]FIRU and [125I]FIAU. Although all three radionucleosides accumulated in the KBALB-STK transduced murine tumour line in vitro and in vivo, [125I]FIRU provided optimal performance in terms of selectivity for HSV tk expressing cells and % of injected dose accumulating in the tumor.  相似文献   

2.
Abstract

A novel screening assay for the identification of baculovirus infected cells expressing membrane receptors was developed by using a replica transfer technique. Sf9 cells were cotransfected with wild type baculoviral DNA and the transfer vector pVL941–β1 containing the coding region of the human β1-adrenergic receptor gene. Infected cells embedded in agarose were incubated with [125I]-iodocyanopindolol and transferred onto filters that were subsequently autoradiographed. This procedure resulted in the isolation of recombinant baculoviruses that expressed β1-adrenergic receptors. Binding assays carried out with [125I]-ICYP indicated that more than 600,000 receptors were expressed per cell, the highest level noted so far for this receptor in genetically engineered cells. Sf9 cells expressing the β1-AR were analysed by ligand binding, competition experiments, adenylyl cyclase stimulation and photoaffinity labeling. These cells express a homogenous population of receptors and display the known pharmacological properties of β1-AR in human tissues.  相似文献   

3.
Synthesis of pyrimidine derivatives with a side‐chain attached to the C‐6 of pyrimidine ring (6–14) is reported. Target compounds 8 and 12 were subjected to in vitro phosphorylation tests, determination of their binding affinities to herpes simplex virus (HSV‐1) thymidine kinase (TK) and catalytic turnover constants. Fluorinated pyrimidine derivative 12 (40 µM) exhibited better binding affinity for HSV‐1 TK than acyclovir (ACV, 170 µM) and ganciclovir (GCV, 48 µM). Catalytic turnover constant (k cat) of 12 (0.08 s? 1) was close to the k cat values of ACV (0.10 s? 1) and GCV (0.10 s? 1). Furthermore, compounds 8 and 12 showed no cytotoxic effects in HSV‐1 TK‐transduced and non‐transduced cell lines. Besides, compounds 8 and 12 did not exhibit antiviral or cytostatic activities against several viruses and malignant tumor cell lines that were evaluated. The new fluorinated pyrimidine derivative 16 that is phosphorylated by HSV‐1 TK could be developed as non‐toxic PET‐tracer molecule. Thus, 18F labelling of the precursor 14 was performed by nucleophilic substitution using [18F] tetrabutylammonium fluoride as the fluorinating reagent.  相似文献   

4.
Abstract

The sub-family of dopamine D1-like receptors is now known to be comprised of at least two members: the originally cloned D1 receptor (herein referred to as the D1a receptor) and a related receptor referred to as the D1b, D1β or D5 dopamine receptor (herein referred to as the D1b/D5 receptor). Here, we characterize the D1b/D5 receptor expressed transiently in COS-7 cells and permanently in Ltk? cells.

Transiently expressed human D1b/D5 receptors bind the D1 specific ligand [125I]SCH 23982 saturably and with high affinity (KD = 500 pM). Competition for [125I]SCH 23982 binding to rat D1b/D5 and human D1a and D1b/D5 receptors supports the contention that the two D1b/D5 receptors are species homologues. Furthermore, in COS-7 cells, as previously observed, dopamine competes for the binding of [125I]SCH 23982 to human D1b/D5 receptors with a higher affinity than that seen at the human D1a receptor. These results are similar to those seen in Ltk? cells permanently transfected with the human D1b/D5 receptor. In these cells, dopamine competition for [125I]SCH 23982 binding is complex, sensitive to guanine nucleotides and of a higher affinity than that observed for dopamine binding to the human D1a receptor expressed in these same cells. In both D1a and D1b/D5 expressing Ltk? cells, dopamine stimulates adenylyl cyclase with an EC50 of = 200 nM. Furthermore, preincubation of Ltk? cells expressing the D1a and D1b/D5 receptors with dopamine results in desensitization of the response of adenylyl cyclase to subsequent agonist stimulation.  相似文献   

5.
Disposition of [125I]rHu-TNF was elucidated in BALB/c mice bearing Meth A fibrosarcoma 7 days after transplantation. Afteri.v. administration, [125I]rHu-TNF measured by radioactivity and immunoreactivity biphasically decreased in plasma. Tumor level of [125I]rHu-TNF was the maximum at 1 h, then decreased and finally remained essentially constant. After i.t. administration, plasma level reached the maximum at 1 h. Tumor level decreased quickly and then became essentially constant. [125I]rHu-TNF was suggested to be degraded to small fragments in the tumor. Significant distribution of [125I]rHu-TNF was found in the kidney, lung, liver and tumor. Most tissue levels decreased with time in parallel with plasma levels. [125I]rHu-TNF radioactivity was found in proximal convoluted tubules of kidney and in those areas of tumor consisting of degenerating cells with pyknotic nuclei. Urine contained most of administered radioactivity, which being neither immunoreactive nor protein-bound.  相似文献   

6.
Degradation of 125I-labelled HDL ([125I]HDL) was measured in isolated rat hepatocytes that had been preincubated with [125I]HDL and then reincubated in fresh medium without [125I]HDL. About 5 % of the [125I]HDL associated with the cells in advance were degraded per hour at 37 °C. This in vitro degradation was inhibited about 50% by lysosomal inhibitors such as chloroquine, ammonia and leupeptin. Depolymerization of microtubuli by colchicine inhibited the degradation of [125I]HDL to about 65–75 % of the control cells. Cytochalasin B (CB), a destabilizer of microfilaments, had a less marked effect on the degradation in vitro. Degradation of [125I]HDL associated with cells in vivo after intravenous injection was also studied in isolated cells. About 8.5% of the [125I]HDL associated with the cells in vivo were degraded per hour in the isolated cells. The effects of ammonia, chloroquine, leupeptin and colchicine on HDL degradation were similar for [125I]HDL taken up in vivo and in vitro. Subcellular fractionation by centrifugation in sucrose gradients indicated that [125I]HDL associated with hepatocytes in vivo are primarily accumulated in lysosomes. [125I]HDL associated with the cells in vitro are located in organelles whose distribution coincides with that of 5′-nucleotidase. These organelles may be endocytic vesicles. It is concluded that the internalization of [125I]HDL in rat hepatocytes is relatively slow. The intracellular degradation of the apoproteins of HDL is at least partly lysosomal.  相似文献   

7.
Abstract

Insulin and IGF-I receptors in G26–20 cells, derived from a mouse oligodendroglioma, and in RN-2 cells, derived from a rat Schwannoma, were characterized by specific binding to [125I]insulin and [125I]IGF-I respectively. In both cell lines, the Kd for insulin was 1.5 nM. Insulin receptor number was 33,000/cell for RN-2 cells and 17,000 receptors/ cell for G26–20 cells. RN-2 cells have 700,000 IGF-I receptors/cell with a Kd of 2 nM while G26–20 cells have 60,000 receptors/cell with an affinity of 4.9 nM. However, the independence of these two receptor populations in each cell type was equivocal since the subunit structure of these receptors appears identical by electrophoresis. In both cell lines, competition with insulin analogs for [125I]insulin binding demonstrated chicken insulin>insulin>IGF-I. Competition for [125I]IGF-I binding showed that IGF-I was approximately 85-fold more potent than insulin. Chicken insulin was ineffective at all concentrations. Thus, chicken insulin can be used as a specific ligand to unequivocally discriminate between IGF-I and insulin receptors and effects.  相似文献   

8.
The C-X-C motif chemokine 12 (CXCL12, SDF1a) and its receptor, CXCR4, play a fundamental role in several biological processes, including hematopoiesis, cardiogenesis, cancer progression, and stem cell migration. Noninvasive monitoring of CXCL12 is highly desirable for optimizing strategies that combine mobilization of therapeutic cells to combat cancer or to assist in cardiac tissue repair after myocardial infarction. Here, we report on an MRI reporter gene system for directly monitoring CXCL12 expression in vivo. Glioma cells and human adipose-derived stem cells (hADSC) were transduced with the herpes simplex virus type-1-thymidine kinase (HSV1- tk) reporter gene expressed under the CXCL12 promoter. HSV1-tk expression resulted in accumulation of the PET tracer [125I]FIAU in vitro and in vivo and induced cell death after ganciclovir treatment. Furthermore, the results show that conditional expression of the reporter gene can be induced by hypoxia in transduced cells. Transduced hADSC were incubated with the CEST MRI probe 5-methyl-5, 6- dihydrothymidine (5-MDHT) and transplanted into swine heart. Transplanted cells were clearly visible on Chemical Exchange Saturation Transfer (CEST) MRI using a 3T clinical scanner. Therefore, we conclude that it is possible to image CXCL12 expression with MRI in a large animal model, opening up a possible route to clinical translation.  相似文献   

9.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   

10.
Abstract: The cocaine analogue RTI-55 was evaluated as a probe for in vitro labeling and localization of dopamine and serotonin transporters after death in the human brain. Kinetic, saturation, and competition binding experiments indicated complex interactions of the radioligand with the identification of multiple recognition sites. In membrane binding assays, the association of [125I]RTI-55 at 25°C to putamen membranes was monophasic. In contrast, dissociation of [125I]RTI-55 occurred in two phases with t1/2 values of 9.4 and 36.5 min, respectively. Saturation analysis of [125I]RTI-55 binding demonstrated two binding sites in the human putamen with KD values of 0.10 ± 0.02 and 1.81 ± 0.46 nM. The binding of [125I]RTI-55 was displaced by a wide range of cocaine analogues and monoamine uptake inhibitors. The rank order of potency demonstrated in competition assays with human putamen membranes indicates that the radioligand labels cocaine recognition sites on the dopamine transporter (mazindol > GBR 12909 > GBR 12935 > paroxetine > nisoxetine > desipramine ≥ fluoxetine > citalopram). In the human occipital cortex, [125I]RTI-55 recognized multiple binding sites with KD values of 0.02 ± 0.01 and 4.18 ± 0.46 nM. The rank order of potency for inhibition of [125I]RTI-55 binding to cerebral cortex membranes (paroxetine > citalopram > GBR 12909 ≥ mazindol ≥ nisoxetine > benztropine) suggests that [125I]RTI-55 labels the serotonin transporter in the human occipital cortex. Autoradiographic mapping of [125I]RTI-55 revealed very high densities of cocaine recognition sites over areas known to be rich in dopaminergic innervation, including the caudate, putamen, and nucleus accumbens. Moderately elevated densities of [125I]RTI-55 binding sites were also seen throughout the thalamus, hypothalamus, and substantia nigra. [125I]RTI-55 binding sites were prevalent throughout the cerebral cortex and amygdala. In autoradiographic studies, the addition of the selective serotonin transport blocker citalopram completely prevented [125I]RTI-55 labeling in the thalamus, hypothalamus, and throughout most of the cerebral cortex. In the presence of citalopram, [125I]RTI-55 binding site densities remained elevated over the striatum and substantia nigra, with selective residual labeling also seen in the external segment of the globus pallidus and the lateral nucleus of the amygdala. These results demonstrate that in the human brain, [125I]RTI-55 labels multiple recognition sites on dopamine and serotonin transporters.  相似文献   

11.
12.
Melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH) are known to exhibit mostly functionally antagonistic, but in some cases agonistic activities, e.g., in pigment cells and in the brain. Neuropeptide E-I (NEI) displays functional MCH-antagonist and MSH-agonist activity in different behavioral paradigms; the role of neuropeptide G-E (NGE) is not known. This study addressed the question of possible molecular interactions between α-MSH, MCH and the MCH-precursor-derived peptides NEI and NGE at the level of the pigment cell MCH receptor subtype (MCH-Rpc) and the different melanocortin (MC) receptors. Radioreceptor assays using [125I]MCH, [125I]α-MSH and [125I]NEI as radioligands and bioassays were performed with MC1-R-positive and MC1-R-negative mouse B16 melanoma cells and with COS cells expressing the different MC receptors. The IC50s of α-MSH and NEI or NGE for [125I]MCH displacement from mouse MCH-Rpc were 80-fold and, respectively, > 300-fold higher than that of MCH, and the IC50s for MCH and NEI or NGE for [125I]α-MSH displacement from mouse MC1-R were 50,000-fold and > 200,000-fold higher than that of α-MSH. No high-affinity binding sites for NEI were detected on B16 melanoma cells and there was no significant displacement of [125I]α-MSH by MCH, NEI or NGE with MC3-R, MC4-R and MC5-R expressed in COS cells. At concentrations of 100 nM to 10 μM, however, MCH, NEI and NGE induced cAMP formation and melanin synthesis which could be blocked by agouti protein or inhibitors of adenylate cyclase or protein kinase A. This shows that mammalian MCH-precursor-derived peptides may mimic MSH signalling via MC1-R activation at relatively high, but physiologically still relevant concentrations, as e.g. found in autocrine/paracrine signalling mechanisms.  相似文献   

13.
Abstract

We have investigated the binding characteristics of rat [125I] adrenomedullin (AM) and human [125I] calcitonin gene-related peptide (CGRP) to membranes prepared from a number of porcine tissues including atrium, ventricle, lung, spleen, liver, renal cortex and medulla. These membranes displayed specific, high affinity binding for [125I] rat AM and [125I] human CGRP. Porcine lung displayed the highest density of binding sites for radiolabeled AM and CGRP followed by porcine renal cortex. Competition experiments performed with [125I] rat AM indicated that the rank order of potencies of various peptides for inhibiting [125I] rat AM binding to various tissues were rat AM ≥ human AM ≥ human AM(22–52) > hαCGRP ≥ hαCGRP(8–37) <<<< sCT except spleen, atrium, renal cortex and renal medulla where rAM and hAM were 20–300 fold more potent than hAM(22–52). When the same experiments were performed using [125I] hαCGRP as the radioligand, the rank order potencies for various peptides were rAM = hAM > hαCGRP > hαCGRP(8–37) in most of the tissues except in spleen and liver. where hαCGRP was the most potent ligand. In lung, hαCGRP was almost as potent as rAM and hAM in displacing [125I] hαCGRP binding. These data suggest the existence of distinct CGRP and AM specific binding sites in contrast to previous reports that showed that both peptides interact differently in rat tissues.  相似文献   

14.
The effect of tunicamycin (TM) on the metabolism of acetylated low-density lipoprotein (AcLDL) was examined to determine whether N-linked glycosylation is required for the proper function of the AcLDL pathway. Proteolytic degradation of [125I]-AcLDL was increased twofold in the presence of TM. This did not occur via an increase in total lysosomal enzyme activity or extracellular proteolysis; rather, the rate of uptake of [125I]-AcLDL was increased. The enhanced degradation of AcLDL did not lead to a commensurate increase in the rate of synthesis of cholesteryl oleate. Conversely, the rate of cholesterol esterification was reduced in the presence of TM. The uptake of [125I]-AcLDL was more sensitive to inhibition by chloroquine in TM-treated cells. However, the presence of TM did not affect the ability of chloroquine to inhibit constitutive recycling of AcLDL binding sites. These results suggest that N-linked glycosylation may be involved in the regulation of AcLDL metabolism in J774 cells.  相似文献   

15.
Abstract

We have examined the presence and properties of specific receptors for IGF-I on bovine mononuclear cells. Competitive binding studies showed that binding of [125I]IGF-I to mononuclear cells was inhibited by unlabelled peptides with the rank of IGF-I > IGF-II > insulin. The binding of [125I]IGF-I was a function of the cell concentration. Equilibrium dissociation constant and receptor concentration values for the average of 9 adult cows were 1.13 ± 0.11 nM and 108.9 ± 24.1 fMol/107 cells, respectively. Moreover, IGF-I stimulated thymidine incorporation into bovine mononuclear cells in the absence of serum and phytohemagglutinin (PHA). The existence of specific and functional IGF-I receptors on circulating bovine mononuclear cells would provide an easily accessible source for studying IGF-I receptor changes in the bovine, both in physiologic and pathologic states.  相似文献   

16.
In atherosclerotic lesions, macrophages are transformed into foam cells accumulating modified low density lipoproteins (LDL) via the scavenger receptor pathway. We have investigated the effects of carboxymethylated beta-1,3-glucan (CMG) on acetylated LDL (AcLDL) metabolism in murine peritoneal macrophages in vitro and upon the clearance of AcLDL by rat liver in vivo. In cultured murine peritoneal macrophages, CMG reduced substantially the AcLDL-induced synthesis of cholesteryl esters, decreased the binding and degradation of [125I]-AcLDL in a dose-dependent manner with complete inhibition at 20–30 nM , but had no effect on the binding and degradation of native [125I]–LDL. In contrast, other polysaccharides studied, namely zymosan, lipopolysaccharide, non-modified glucan and mannan Rhodexman, had a slight effect at concentrations significantly exceeding the concentrations of CMG. [125I]-AcLDL injected intravenously into rats was cleared from the blood with a half-life of 3.7 min. About 56 per cent of the label of injected [125I]-AcLDL was recovered in the liver 15 min after administration. Co-injection of the labelled AcLDL with CMG (25 mg kg?1 b.w.) decreased the rate of AcLDL clearance so that the half-life increased to 6.0 min. Injections of CMG (25 mg kg?1 b.w.) 48 and 24 h before the determination increased the rate of [125I]-AcLDL clearance (with a half-life of about 2.3 min) and increased the uptake of AcLDL by the liver. We suggest that CMG competed with AcLDL for scavenger receptors in vitro and in vivo and repeated CMG injections before the measurements of AcLDL resulted in the induction of scavenger receptor function.  相似文献   

17.
Abstract

This study demonstrates the existence of a high affinity binding site on rabbit cardiac fibroblasts of the hexapeptide (3-8) fragment of angiotensin II (AngIV). [125I]-AngIV binding is saturable, reversible and distinct from angiotensin II (AngII) receptors. At 37°C equilibrium of [125I]-AngIV binding is reached within 2 h. AngIV displaces [125I]-AngIV bound to cultured rabbit cardiac fibroblasts whereas AngII receptor-specific ligands ([Sar1,IIe8]-AngII, Dup753, CGP42112A) do not. Scatchard plot analysis revealed that [125I]-AngIV binds to a single class of sites with Kd = 4.87 ± 0.11 × 10?9 mol/l, Bmax = 371 ± 8.3 fmol/mg protein and a Hill coefficient of 0.92. In the presence of the non-hydrolyzable GTP analog GTPγS [125I]-AngIV binding in rabbit cardiac fibroblasts was not markedly affected, whereas binding of [125I]-(Sar1,IIe8)-AngII is reduced. The role of AngIV in the heart and in particular in cardiac fibroblasts is unknown, and the putative interaction of AngIV with AngII needs further characterization.  相似文献   

18.
AimsThyroid hormones (TH) play an important role in the development and functional maintenance of the central nervous system. The purpose of this study was to develop a radiotracer method for studying the in vivo efflux transport of iodide liberated by the TH metabolism in the brain. The rationale of our method is as follows: a radioiodinated compound can enter the brain and rapidly release iodide in situ; the iodide efflux rate can be estimated from the clearance of brain radioactivity after disappearance of the iodinated compound.Main methods6-[125I]Iodo-9-pentylpurine ([125I]9Pe6IP) was designed to enter the brain and release 125I? by the reaction with glutathione and synthesized from the corresponding bromo derivative in a Br/125I exchange reaction. The brain kinetics of radioactivity and radioactive metabolites were investigated after intravenous injection of [125I]9Pe6IP into mice. The iodide efflux rate was estimated in mice pretreated with perchlorate, an inhibitor of iodide transport from the brain.Key findingsHigh brain uptake (5.3% injected dose/g) was observed at 1 min, and almost complete conversion of [125I]9Pe6IP to 125I? occurred 10 min after injection. The 125I? uptake from the blood was negligible. 125I? was eliminated from the brain along a single-exponential curve with a half-life of 6.0 min. Furthermore, dose-dependent inhibition of 125I? efflux was observed in mice pretreated with perchlorate.SignificanceWe conclude that 9Pe6IP labeled with 124I (positron emitter) or 123I (single-photon emitter) may be useful for studying the in vivo efflux transport of iodide in the brain using nuclear medicine imaging devices.  相似文献   

19.
A photoreactive analogue of human melanin‐concentrating hormone was designed, [d‐ Bpa13,Tyr19]‐MCH, containing the d‐ enantiomer of photolabile p‐benzoylphenylalanine (Bpa) in position 13 and tyrosine for radioiodination in position 19. The linear peptide was synthesized by the continuous‐flow solid‐ phase methodology using Fmoc‐strategy and PEG‐PS resins, purified to homogeneity and cyclized by iodine oxidation. Radioiodination of [d ‐Bpa13,Tyr19]‐MCH at its Tyr19 residue was carried out enzymatically using solid‐ phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed‐ phase mini‐column and HPLC. Saturation binding analysis of [125I]‐[d‐ Bpa13,Tyr19]‐MCH with G4F‐7 mouse melanoma cells gave a KD of 2.2±0.2×10−10 mol/l and a Bmax of 1047±50 receptors/cell. Competition binding analysis showed that MCH and rANF(1–28) displace [125I]‐[d‐ Bpa13,Tyr19]‐MCH from the MCH binding sites on G4F‐7 cells whereas α‐MSH has no effect. Receptor crosslinking by UV‐irradiation of G4F‐7 cells in the presence of [125I]‐[d‐ Bpa13,Tyr19]‐MCH followed by SDS‐polyacrylamide gel electrophoresis and autoradiography yielded a band of 45–50 kDa. Identical crosslinked bands were also detected in B16‐F1 and G4F mouse melanoma cells, in RE and D10 human melanoma cells as well as in COS‐7 cells. Weak staining was found in rat PC12 phaeochromocytoma and Chinese hamster ovary cells. No crosslinking was detected in human MP fibroblasts. These data demonstrate that [125I]‐[d‐ Bpa13,Tyr19]‐MCH is a versatile photocrosslinking analogue of MCH suitable to identify MCH receptors in different cells and tissues; the MCH receptor in these cells appears to have the size of a G protein‐coupled receptor, most likely with a varying degree of glycosylation. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
NAD(P)H: quinone oxidoreductase 1 (NQO1) is an obligate two-electron reductase and is highly expressed in many human solid cancers. Because NQO1 can be induced immediately after exposure to ionizing radiation, we aimed to develop an NQO1-targeted radiolabeled agent to establish a novel internal radiation therapy that amplifies the therapeutic effects when combined with external radiation therapy. We designed three NQO1-targeted radioiodinated compounds including two ether linkage compounds ([125I]1 and [125I]2) and a sulfide linkage compound ([125I]3) based on the selective binding of indolequinone analogs to the active site of NQO1 by the stacking effect. These compounds were successfully prepared using an oxidative iododestannylation reaction with high radiochemical yields and purity. In NQO1-expressing tumor cells, [125I]1 and [125I]2 were readily metabolized to p-[125I]iodophenol or m-[125I]iodophenol and [125I]I, whereas over 85% of the initial radioactivity of [125I]3 was observed as an intact form at 1 h after incubation. The cellular uptake of [125I]3 was significantly higher than those of [125I]1 and [125I]2. The uptake of [125I]3 was specific and was dependent on the expression of NQO1. These data suggest that the novel NQO1-targeted radioiodinated compound [125I]3 could be used as a novel internal radiation agent for the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号