首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
1-(2-Oxocyclobutyl-4-benzoyloxymethyl)-2,4(1H,3H)-pyrimidinedione and 1-(2-oxocyclobutyl-4-benzoyloxymethyl)-5-methyl-2,4(1H,3H)-pyrimidinedione can be prepared by reaction of uracil and thymine, respectively, with 3-benzoyloxymethyl-2-bromocyclobutanone. The N-alkylation gave both cis and trans isomers with the trans isomer predominating for uracil whereas the trans isomer was the only product which could be isolated for thymine. Both series were subjected to borohydride reduction followed by transesterification with methoxide giving the corresponding uracil and thymine nucleoside analogues. The uracil derivative 1-(2-oxocyclobutyl-4-benzoyloxymethyl)-2,4(1H,3H)-pyrimidinedione was irradiated in aqueous acetonitrile to generate isonucleoside analogues.  相似文献   

2.
The structures of the cyclic hexapeptide cyclo(-Gly-Tyr-Val-Pro-Met-Leu-) ( 1 ) and its phosphotyrosyl (pTyr) derivative cyclo[-Gly-Tyr(PO3H2)-Val-Pro-Met-Leu-] ( 2 ), designed as constrained models of a sequence that interacts with the src homology 2 (SH2) region of the p85 subunit of phosphatidylinositol-3-OH kinase (PI-3 kinase), were studied in methanol/water solutions by 500 MHz nmr spectroscopy. Compound 1 was found to exist as a 2:1 mixture of isomers about the Val-Pro bond (trans and cis prolyl) between 292–330 K in 75% CD3O (D,H)/(D,H)2O solutions. A third species of undetermined structure (ca. 5%) was also observed. Compound 2, a model of phosphorylated peptide ligand that binds to the PI-3 kinase SH2 domain, exhibited similar conformational isomerism. When either compound was dissolved in pure solvent [i.e., 100% CD3O(H,D) or (H,D)2O] the ratio of cis to trans isomers was ca 1:1. A battery of one- and two-dimensional nmr experiments at different temperatures and solvent compositions allowed a complete assignment of both the cis and trans forms of 1 and indicated the trans compound to be the major isomer. The spectral properties of the phosphorylated derivative 2 paralleled those of 1 , indicating like conformations for the two compounds. Analysis of rotating frame Overhauser spectroscopy data, coupling constants, amide proton temperature dependence, and amide proton exchange rates generated a set of constraints that were employed in energy minimization and molecular dynamics calculations using the CHARMM force field. The trans isomer exists with the tyrosine and C-terminal Tyr(+3) (Met) residues at opposite corners of the 18-membered ring separated by a distance of 16–18 Å, in contrast with the cis isomer where the side chains of these residues are much closer in space (7–14 Å). It was previously shown that the pTyr and the third amino acid C-terminal to this residue are the critical recognition elements for pTyr-peptide binding to the PI-3 kinase SH2 domain. Such cyclic structures may offer appropriate scaffolding for positioning important amino acid side chains of pTyr-containing peptides as a means of increasing their binding affinities to SH2 domains, and in turn provide a conceptual approach toward the design of SH2 domain directed peptidomimetics. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Conformational investigations of the tetrapeptide Pro-D-Phe-Pro-Gly in water solution were carried out by 1H and 13C NMR spectroscopy. The internal proline residue allows for the possibility of cis/trans isomerization about the D-Phe-Pro peptide bond resulting in two conformational isomers. The major isomer was identified as the trans isomer. The pH-dependence of the cis/trans equilibrium supports an additional stabilisation of the trans isomer by an intramolecular ionic interaction between the amino- and carboxy-terminus in the zwitterionic state. Based on 13C spin-lattice relaxation times (T1), different pyrrolidine ring conformations of Pro1 and Pro3 could be determined. By combination of several NMR data (vicinal coupling constants 3JN alpha, temperature dependence of the NH chemical shifts, differences in the chemical shifts between the beta and gamma carbons of the proline residues) and energy minimization calculations, a type II' beta-turn should contribute considerably to the overall structure of the trans isomer.  相似文献   

4.
The N-(2-deoxy-beta3-D-erythro-pentofuranosyl) formamide residue results from a ring fragmentation product of thymine or cytosine. The presence of a formamide-adenine base pair in the sequence 5'd(AGGAACCACG).d(CGTGGFTCCT) has been studied by 1H and 31P nuclear magnetic resonance (NMR) and molecular dynamics. There are two possible isomers for the formamide side chain, either cis or trans. For each isomer, we observed an equilibrium in solution between two forms. First, a species where the formamide is intrahelical and paired with the facing adenine. For the cis isomer, the formamide is in a syn conformation and two hydrogen bonds with adenine are formed. The trans isomer is in an anti conformation and a single hydrogen bond is observed. In the second form, whatever the isomer, the formamide is rejected outside the helix, whereas the adenine remains inside.  相似文献   

5.
The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.  相似文献   

6.
The proton magnetic resonance (PMR) spectrum of acetyl-proline amide in D2O solution has been analysed by computer simulation. The spectra of the cis and the trans isomers have been separated and their PMR parameters (chemical shift and coupling constants) are given. Vicinal coupling constants of the pyrrolidine ring are interpreted by means of a Karplus zone relation. The chemical shift effect of the anisotropy of both peptide planes is considered. It follows that both isomers are puckered with Cgamma in an endo position, but the cis isomer is more rigid than the trans isomer, which moreover undergoes a small interconversion of the Cgamma and Cdelta atoms between two extreme spatial positions. The dihedral angle phi has different values in both isomers. Thus, the dihedral angle between the two peptide planes is smaller in the trans isomer than in the cis isomer.  相似文献   

7.
Abstract

The synthesis of 1-[4-deoxy-4-C-hydroxymethyl-α-L-lyxopyranosyl]thymine has been accomplished by two synthetic routes both starting from methyl 2, 3-O-isopropylidene-β-D-ribopyranoside. The first route makes use of a ring opening, ring closure reaction sequence to increase the proportion of the desired L-isomers. The second route utilizes the soft nucleophilic character of malonyl anions and ozonolytic cleavage of enol ether to introduce the branched chain. The newly obtained pyranosyl nucleoside obtains a 4C1 conformation with an equatorially oriented thymine moiety.  相似文献   

8.
1H-NMR spectra for the angiotensin agonist sarcosine-(Sar)Arg-Val-Tyr-Ile-His-Sar-Phe [( Sar1,Sar7]Ang II) and the antagonist Sar-Arg-Val-Tyr-Ile-His-Sar-Ile in dimethylsulfoxide-d6 were examined at 400 MHz. Splitting of the resonances for Tyr, His, and Sar protons revealed that the His6-Sar7 peptide bond existed in both cis and trans forms, with one isomer predominating in the ratio 5:1 in both peptides. Comparison of the chemical shifts for the His6 and Phe8 ring protons in these peptides suggested a His/Phe stacking interaction in [Sar1,Sar7]Ang II which is important for agonist activity.  相似文献   

9.
Abstract

1,3-Dipolar cycloaddition of 1-vinylthymine to azides, nitrile oxides, nitrones and nitronates has been investigated as a route to heterocyclic nucleoside analogues in which the nucleoside ribose moiety has been replaced by an alternative heterocycle. Reaction of 1-vinylthymine with highly reactive nitrile oxides affords 1-(isoxazolin-5-yl)thymine products in excellent yield at room temperature. The less reactive nitrone dipoles undergo cycloaddition to 1-vinylthymine at elevated temperature to afford l-(isoxazolidin-5-yl)thymine cycloadducts in good-to-moderate yields, but show a tendency to eliminate thymine from the cycloaddition products over long reaction times. Azide cycloadditions to 1-vinylthymine proceed only under forcing conditions to which the fragile triazollne products are unstable.  相似文献   

10.
The conformation of tetrahydrobiopterin analogues in aqueous solution at 23 degrees C has been determined by analyzing the 200-MHz 1H NMR spectral parameters of the enzymatically active 6-methyltetrahydropterin, 7-methyltetrahydropterin, and cis- and trans-6,7-dimethyl-5,6,7,8-tetrahydropterins. Each of these cofactors, with the exception of the cis-6,7-dimethyl isomer, exhibited an unusually small trans 6H-7H spin-spin coupling (8.5-9.1 Hz). An empirical equation that accounts for the effects of substituent electronegativity and orientation on vicinal couplings [Haasnoot, C. A. G., deLeeuw, F. A. A. M., & Altona, C. (1980) Tetrahedron 36, 2783-2792] predicted this coupling to be 11.3-11.6 Hz. We attribute the discrepancy between the calculated and experimentally observed values of this coupling to hyperconjugation of the axially oriented C7-H bond with the pi orbital of the vinylogous amide protein of the pterin ring (N8-C8a = C4a-C4 = O) rather than conformational averaging. The trans 6H-7H interproton distance in the 6-methyl analogue is calculated to be 3.0 A from the measured decrease in the spin-lattice relaxation rate of the axially oriented C7 proton after specific deuteration at C6. This is consistent with the single-conformer interpretation. Chemical shift comparisons of the methyl resonances of these analogues, NOE measurements from selectively deuterated analogues, and the differential sensitivities of axially vs. equatorially disposed ring protons to protonation at N5 all indicate that (i) the methyl substituents at both the C6 and C7 positions markedly prefer equatorial-like orientations and (ii) the tetrahydropterin ring is, with the exception of a pronounced pucker at C6, nearly planar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract

Adenine (7 and 16), thymine (9a and 18a), and 5-fluorouracil (9b and 18b) involving f-2, c-3-bishydroxymethyl-r-1-cyclopropylmethyl- and t-2 t-3-bishydroxymethyl-r-1-cyclopropylmethyl residues were synthesized, starting from trans-1, 4-dibenzyloxy-2-butene and its cis isomer, respectively. These compounds were evaluated for anti HSV-1 activity.  相似文献   

12.
The presence of an N-(2-deoxy-beta-D-erythro-pentofuranosyl) formamide (F) residue, a ring fragmentation product of thymine, in a frameshift context in the sequence 5'-d-(AGGACCACG)*d(CGTGGFTCCT) has been studied by 1H and 31P nuclear magnetic resonance (NMR) and molecular dynamics. Two-dimensional NMR studies show that the formamide residue, whether the cis or trans isomer, is rotated out of the helix and that the bases on either side of the formamide residue in the sequence, G14 and T16, are stacked over each other in a way similar to normal B-DNA. The cis and trans isomers were observed in the ratio 3:2 in solution. Information extracted from 31P NMR data reveal a modification of the phosphodiester backbone conformation at the extrahelical site, which is also observed during the molecular dynamics simulations.  相似文献   

13.
Cyclobutane analogs of GABA   总被引:1,自引:0,他引:1  
Bothcis-andtrans-3-aminocyclobutane-1-carboxylic acid have been synthesized as conformationally restricted analogs of GABA. The cis isomer displayed weak to moderate GABA-like activity with respect to (1) inhibition of GABA uptake in rat brain minislices, (2) inhibition of sodium-independent binding of GABA to rat brain membranes, (3) activity as a substrate for GABA aminotransferase, and (4) depression of the firing rate of cat spinal neurons in vivo. The trans isomer was less effective on all four assays. The result has been interpreted in terms of the conformational pinning back of the polar groups by the cyclobutane ring in the trans GABA analog so that unfavorable steric interactions would occur between one of the methylene groups and a region of steric hindrance at the active sites for particular GABA processes.  相似文献   

14.
Abstract

Syntheses of 1-[cis-2-hydroxy-cis-3-(hydroxymethyl)cyclobutyl]thymine (1) and related compounds by a novel method are reported. Coupling of 3-benzyloxymethyl-l-cyclobutene (2) with silylated thymine in the presence of NIS, followed by treatment with DBU, basic hydrolysis and catalytic hydrogenation produced the target compound (1) and its isomer (12).  相似文献   

15.
Abstract

The synthesis of new thiazolididone nucleoside analogues is described. Among the different proposed synthetic pathways, the condensation of various nucleic bases using TMSOTf and Et3N as coupling reagents on a key sulfoxide thiazolidinone intermediate led to the desired compounds in a one-pot procedure. Analytical data and NMR studies confirmed the proposed structure assignment for these compounds.  相似文献   

16.
(1S,3S,4R)-1-Phenyl-1-thymidyl-3-hydroxy-4-hydroxymethylcyclopentane (10) and their analogs were synthesized, incorporated into the oligodeoxynucleotides, and their properties were evaluated for the formation of duplex and triplex DNA. The known chiral cyclopentanone derivative was converted into the corresponding ketimine sulfonamide derivative, which was subjected to a stereoselective PhLi addition. The formed sulfonamide was hydrolyzed to afford the primary amino group, on which the thymine moiety was built. The benzyl protecting groups were removed to form the nucleoside analog having a phenyl group and the thymine unit at the 1′ position of a carbocyclic skeleton (10). In the estimation of the oligodeoxynucleotides incorporating 10 for duplex and triplex formation, the carbocyclic nucleoside analog 10 did not show the stabilizing effect for duplex formation; on the other hand, it stabilized the triplex. Therefore, the skeleton of the phenyl-substituted carbocyclic nucleoside analog 10 may be a platform for the formation of stable triplex DNA.  相似文献   

17.
In the present paper we describe the solution nmr structural analysis and restrained molecular dynamic simulation of the cyclic pentapeptide cyclo-(Pro-Phe-Phe-β-Ala-β-Ala). The conformational analysis carried out in CD3CN and dimethylsulfoxide (DMSO) solutions by nmr spectroscopy was based on interproton distances derived from rotating frame nuclear Overhauser effect spectroscopy spectra and homonuclear coupling constants. A restrained molecular dynamic simulation in vacuo was also performed to build refined molecular models. The molecule is present in both solvent systems as two slowly interconverting conformers, characterized by a cis-trans isomerism around the β-Ala5-Pro1 peptide bond. In CD3CN solution, the conformer with a cis peptide bond is quite similar to that observed in the solid state, while the conformer containing all trans peptide bonds is characterized by an intramolecular hydrogen bond stabilizing a C10- and a C13-ring structure. In DMSO solution, the trans isomer is partly similar to that observed in CD3CN solution while the cis isomer is different from that observed in the solid state. The effect of the solvent in stabilizing different conformations was also investigated in DMSO-CD3CN solvent mixtures. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Abstract

Per-O-acetyl-β--glycopyranosylisothiocyanates (3 and 4) were condensed with 2-chloroethylamine hydrochloride to afford N,N'-bis(per-O-acetyl–β--glycopyranosyl)-N-(2-thiazolin-2-yl)thioureas (5 and 6) through the glycosylaminoheterocycles (7 and 8) as intermediates. Compounds 7 and 8 were converted into N-(2-thiazolin-2-yl)urea or thioureas (9–11) by reaction with iso(thio)cyanates. Compounds 5, 6 and 9–11 show a strong chelated structure due to an intramolecular hydrogen bond, which anchors the E,Z conformation in solution.  相似文献   

19.
Dinshaw J. Patel 《Biopolymers》1977,16(8):1635-1656
We have monitored the helix-coil transition of the self-complementary d-CpCpGpG and d-GpGpCpC sequences (20mM strand concentration) at the base pairs, sugar rings, and backbone phosphates by 360-MHz proton and 145.7-MHz phosphorus nmr spectroscopy in 0.1M phosphate solution between 5 and 95°C. The guanine 1-imino Watson-Crick hydrogen-bonded protons, characteristic of the duplex state, are observed below 10°C, with solvent exchange occurring by transient opening of the tetranucleotide duplexes. The cytosine 4-amino Watson-Crick hydrogen-bonded protons resonate 1.5 ppm downfield from the exposed protons at the same position in the tetranucleotide duplexes, with slow exchange indicative of restricted rotation about the C-N bond below 15°C. The guanine 2-amino exchangeable protons in the tetranucleotide sequence exhibit very broad resonances at low temperatures and narrow average resonances above 20°C, corresponding to intermediate and fast rotation about the C-N bond, respectively. Solvent exchange is slower at the amino protons compared to the imino protons since the latter broaden out above 10°C. The well-resolved nonexchangeable base proton chemical shifts exhibit helix-coil transition midpoints between 37 and 42°C. The transition midpoints and the temperature dependence of the chemical shifts at low temperatures were utilized to differentiate between resonances located at the terminal and internal base pairs while the H-5 and H-6 doublets of individual cytosines were related by spin decoupling studies. For each tetranucleotide duplex, the cytosine H-5 resonances exhibit the largest chemical shift change associated with the helix-coil transition, a result predicted from calculations based on nearest-neighbor atomic diamagnetic anisotropy and ring current contributions for a B-DNA duplex. There is reasonable agreement between experimental and calculated chemical shift changes for the helix-coil transition at the internal base pairs but the experimental shifts exceed the calculated values at the terminal base pairs due to end-to-end aggregation at low temperatures. Since the guanine H-8 resonances of the CpCpGpG and d-CpCpGpG sequences exhibit upfield shifts of 0.6–0.8 and <0.1 ppm, respectively, on duplex formation, these RNA and DNA tetranucleotides with the same sequence must adopt different base-pair overlap geometries. The large chemical shift changes associated with duplex formation at the sugar H-1′ triplets are not detected at the other sugar protons and emphasize the contribution of the attached base at the 1′ position. The coupling sum between the H-1′ and the H-2′ and H-2″ protons equals 15–17 Hz at all four sugar rings for the d-CpCpGpG and d-GpGpCpC duplexes (25°C), consistent with a C-3′ exo sugar ring pucker for the deoxytetranucleotides in solution. The temperature dependent phosphate chemical shifts monitor changes in the ω,ω′ angles about the O-P backbone bonds, in contrast to the base-pair proton chemical shifts, which monitor stacking interactions.  相似文献   

20.
Abstract

Conformational analysis and 1H NMR spectral assignments have been carried out using COSY and RELAY methods for a series of related oligoribonucleotides including two pen- tamers with 5′-dangling bases. Intraresidue long-range five bond scalar coupling was observed between pyrimidine H5 and H1′ protons in the COSY-45 spectra and this feature was useful for both assignment purposes and conformational analysis. The ribose ring conformations were predominantly C3′-endo with the C2′-endo population increasing at the 3′-terminus. The 5′-dangling bases were not stacked efficiently, exhibiting lower % C3′-endo values than their 3′-nearest neighbors. Backbone torsion angle populations, β′, γ+, ε′, were determined using ′H-′H, ′H-31P, and 13C-31P coupling constants. From β′ and γ+ populations the U3-G4 step in CAUG was found to be less efficiently stacked than the C1-A2 and A2-U3 steps. This observation in solution is consistent with the fiber diffraction A-RNA model (S. Arnott, D.W.L. Hukins, S.D. Dover, W. Fuller and A.R. Hodgson, J. Mol. Biol. 81, 107-122, 1973) which also predicts poor stacking in a U-G dinucleotide. The ε′ populations were >65% for all C3′- O3′ bonds and consistent with a right-handed A-RNA helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号