首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrochemical methods were used to activate MnIII and FeIII complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2TMPyP) to cause cleavage of pBR322 DNA and to study their interaction with sonicated calf thymus DNA. Electrochemical reduction of MnIIITMPyP and FeIIITMPyP (at low concentrations) in the presence of O2 was required to activate these complexes. However, FeIIITMPyP at 1 x 10(-6) M produced DNA strand breakage without being electrochemically reduced. At low concentrations, FeIITMPyP was more efficient at cleaving DNA than MnIITMPyP. Reduction of O2 at a platinum electrode also produced some cleavage but to a much smaller extent. The oxidized form of MnIIITMPyP (charge 5+) has higher affinity for sonicated calf thymus (CT) DNA than the reduced form (charge 4+), as determined by the negative shift in E degrees' for the voltammetric wave in the presence of DNA. Both forms of FeIIITMPyP (charge 4+) interact with DNA to about the same extent. Differential pulse voltammetry was used to determine binding constants (K) and binding-site sizes (s) of the interaction of these metalloporphyrins with sonicated CT DNA. The data were analyzed assuming both mobile and static equilibria. MnIIITMPyP binds to DNA (5 mM Tris, 50 mM NaCl, pH 7) with K = 5 (+/- 2) x 10(6) M-1, s = 3 bp (mobile) or K = 3.6 (+/- 0.3) x 10(6) M-1, s = 4 bp (static). FeIIITMPyP at that ionic strength caused DNA precipitation. At higher ionic strength (0.1 M Tris, 0.1 M NaCl, pH 7), FeIIITMPyP associates to DNA with K = 4.4 (+/- 0.2) x 10(4) M-1, s = 5 bp (mobile) or K = 1.9 (+/- 0.1) x 10(4) M-1, s = 6 bp (static).  相似文献   

2.
Upon photolysis, diiron complexes 1,4- and 1,3-Fp(2)C(6)H(4) (1 and 2) linearize plasmid DNA at ratios as low as 1.5 and 3.0 molecules/bp DNA, respectively. Additionally, single-strand cleavage was observed at ratios higher than 0.05 and 0.19 molecules/bp DNA for 1 and 2, respectively. Radical scavenging studies and metal radical control experiments implicate carbon-centered radicals as participants in the cleavage pathway.  相似文献   

3.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

4.
Bromofluoroacetophenone derivatives which produce fluorine substituted phenyl radicals that cleave DNA upon excitation were investigated as a novel photonuclease. Pyrrolecarboxamide-conjugated bromofluoroacetophenones; 4'-bromo-2'-fluoroacetophenone and 2'-bromo-4'-fluoroacetophenone were synthesized and their DNA cleaving activities and sequence selectivities were determined. Bromofluoroacetophenone-pyrrolecarboxamide conjugates were found to be effective DNA cleaving agents upon irradiation in concentration dependent manner based on plasma relaxation assay. The DNA cleaving activities of 2'-bromo-4'-fluoroacetophenone derivatives were larger than those of 4'-bromo-2'-fluoroacetophenone derivatives.  相似文献   

5.
Cleavage of DNA by brown algal polyphenols   总被引:2,自引:0,他引:2  
Extracts of marine algae have been tested to determine their ability to cleave DNA. The species producing positive results wereAscophyllum nodosum, Fucus serratus, F. spiralis, F. vesiculosus, Halidrys siliquosa andHimanthalia elongata. Partial purification of each extract by dialysis against water revealed that the active compounds in each species were high molecular weight polyphenols.  相似文献   

6.
Cleavage of phosphorothioate-substituted DNA by restriction endonucleases   总被引:7,自引:0,他引:7  
M13 RF DNA was synthesized in vitro in the presence of various single deoxynucleoside 5'-O-(1-thiotriphosphate) phosphorothioate analogues, and the three other appropriate deoxynucleoside triphosphates using a M13 (+)-single-stranded template, Escherichia coli DNA polymerase I and T4 DNA ligase. The resulting DNAs contained various restriction endonuclease recognition sequences which had been modified at their cleavage points in the (-)-strand by phosphorothioate substitution. The behavior of the restriction enzymes AvaI, BamHI, EcoRI, HindIII, and SalI towards these substituted DNAs was investigated. EcoRI, BamHI, and HindIII were found to cleave appropriate phosphorothioate-substituted DNA at a reduced rate compared to normal M13 RF DNA, and by a two-step process in which all of the DNA is converted to an isolable intermediate nicked molecule containing a specific discontinuity at the respective recognition site presumably in the (+)-strand. By contrast, SalI cleaved substituted DNA effectively without the intermediacy of a nicked form. AvaI, however, is only capable of cleaving the unsubstituted (+)-strand in appropriately modified DNA.  相似文献   

7.
Cytosine-containing T4 DNA from endoII- endoIV- dCTPase- alc2 phage grown in a sup+ rB- mB- host is cleaved by endo R.EcoRI and endo R.HindIII to greater than 40 fragments and by endo R.SalI and endo R.KpnI to 8 and 6 fragments, respectively. The latter two fragment sets have been correlated to each other to produce a cleavage map of the genome. The sum of the molecular weights of the fragments calculated from electrophoretic mobility in agarose gels yields a genome molecular weight for cytosine-containing T4 DNA of 105 x 10(6).  相似文献   

8.
Two different series of naphthalene and anthracene based hydroxamic acids having amino acid derivatives were synthesized. Single strand DNA cleavage was achieved on irradiation of newly synthesized hydroxamic acids by UV light (≥350nm). Both reactive oxygen species (ROS) and generated radicals from hydroxamic acids were shown to be responsible for the DNA cleavage. Further, DNA cleaving ability of hydroxamic acids was found to be dependent on its concentration and on its structure.  相似文献   

9.
R P Hertzberg  P B Dervan 《Biochemistry》1984,23(17):3934-3945
The synthesis of methidiumpropyl-EDTA (MPE) is described. The binding affinities of MPE, MPE.Ni(II), and MPE.Mg(II) to calf thymus DNA are 2.4 X 10(4) M-1, 1.5 X 10(5) M-1, and 1.2 X 10(5) M-1, respectively, in 50 mM NaCl, pH 7.4. The binding site size is two base pairs. MPE.Mg(II) unwinds PM2 DNA 11 +/- 3 degrees per bound molecule. MPE.Fe(II) in the presence of O2 efficiently cleaves DNA and with low sequence specificity. Reducing agents significantly enhance the efficiency of the cleavage reaction in the order sodium ascorbate greater than dithiothreitol greater than NADPH. At concentrations of 0.1-0.01 microM in MPE.Fe(II) and 10 microM in DNA base pairs, optimum ascorbate and dithiothreitol concentrations for DNA cleavage are 1-5 mM. Efficient cleavage of DNA (10 microM in base pairs) with MPE.Fe(II) (0.1-0.01 microM) occurs over a pH range of 7-10 with the optimum at 7.4 (Tris-HCl buffer). The optimum cleavage time is 3.5 h (22 degrees C). DNA cleavage is efficient in a Na+ ion concentration range of 5 mM to 1 M, with the optimum at 5 mM NaCl. The number of single-strand scissions on supercoiled DNA per MPE.Fe(II) under optimum conditions is 1.4. Metals such as Co(II), Mg(II), Ni(II), and Zn(II) inhibit strand scission by MPE. The released products from DNA cleavage by MPE.Fe(II) are the four nucleotide bases. The DNA termini at the cleavage site are 5'-phosphate and roughly equal proportions of 3'-phosphate and 3'-(phosphoglycolic acid). The products are consistent with the oxidative degradation of the deoxyribose ring of the DNA backbone, most likely by hydroxy radical.  相似文献   

10.
Anthraquinone and naphthalene diimide intercalators with amine-containing side chains cleave plasmid DNA at abasic sites (apurinic or apyrimidinic (AP) sites). The intercalator-amine is substantially more effective than the amine itself; many intercalators with diamine side chains cleave most of the abasic sites at micromolar concentration (30 min at 37 degrees C). Intercalators with two amino moieties in the side chain are more efficient than those with one, arguing for a role for each of two amines in the cleavage mechanism. Side chains ending in tertiary amines are somewhat more effective than those ending in primary amines, indicating that imine formation is not required for cleavage at the abasic site. We also report a systematic study of abasic site cleavage by polyamines, including piperidine, spermine, spermidine and 12 other di-, tri- and tetra-amines. For polyamines as well as intercalator-amines, examples with three carbon atoms between neighboring nitrogens atoms cleave most efficiently. This may reflect a particularly favorable geometry for proton abstraction for these species. The effect of nitrogen-nitrogen spacing on the pKa values of the nitrogens may contribute as well. Overall, cleavage of plasmid DNA at adventitious abasic sites by intercalator-amines bearing two nitrogens in a single side chain occurs readily.  相似文献   

11.
In the paper are presented new photoredox systems for the reduction of water in which water- soluble Sn(IV) and Ru(II) porphyrins have been used as photosensitizers It has been found that during the photolysis of water Sn(IV) porphyrin underwent photoreduction whereas Ru(II) porphyrin underwent photooxidation. The successive photo- products of Sn(IV) porphyrin in the reaction from EDTA were, first, Sn(IV) chlorin and, second, Sn(IV) bacteriochlorin. In the experiments on the photo- generation of hydrogen, a correlation between the rates of hydrogen evolution and the reduction potentials of the electron carriers has been observed. The highest rate of hydrogen generation by means of Sn(IV) and Ru(II) porphyrins has been found for those electron carriers whose values of reduction potentials were tau; 0.55 and tau; 0.45 V. In the case of Ru(II) porphyrin, the rate of hydrogen evolution additionally depended on the molecular structure of the electron carrier. It has been found that during the water photolysis, viologens show a tendency to form their respective complexes with Ru(II) porphyrin, but only when they occur in a one-electron reduced form in the solution.  相似文献   

12.
It is assumed that the efficient antitumor activity of calicheamicin gamma1 is mediated by its ability to introduce DNA double-strand breaks in cellular DNA. To test this assumption we have compared calicheamicin gamma1-mediated cleavage of cellular DNA and purified plasmid DNA. Cleavage of purified plasmid DNA was not inhibited by excess tRNA or protein indicating that calicheamicin gamma1 specifically targets DNA. Cleavage of plasmid DNA was not affected by incubation temperature. In contrast, cleavage of cellular DNA was 45-fold less efficient at 0 degrees C as compared to 37 degrees due to poor cell permeability at low temperatures. The ratio of DNA double-strand breaks (DSB) to single-stranded breaks (SSB) in cellular DNA was 1:3, close to the 1:2 ratio observed when calicheamicin gamma1 cleaved purified plasmid DNA. DNA strand breaks introduced by calicheamicin gamma1 were evenly distributed in the cell population as measured by the comet assay. Calicheamicin gamma1-induced DSBs were repaired slowly but completely and resulted in high levels of H2AX phosphorylation and efficient cell cycle arrest. In addition, the DSB-repair deficient cell line Mo59J was hyper sensitive to calicheamicin gamma. The data indicate that DSBs is the crucial damage after calicheamicin gamma1 and that calicheamicin gamma1-induced DSBs are recognized normally. The high DSB:SSB ratio, specificity for DNA and the even damage distribution makes calicheamicin gamma1 a superior drug for studies of the DSB-response and emphasizes its usefulness in treatment of malignant disease.  相似文献   

13.
In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV–Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (Kb = 1.4 × 104 M?1) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 ?4.8 × 104 M?1. CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.  相似文献   

14.
DNA was found to be cleaved by arenes and copper(II) salts in neutral solutions. The efficiency of this reaction is comparable with the DNA cleavage by such systems as Cu(II)–phenanthroline and Cu(II)–ascorbic acid in efficiency, but, unlike them, it does not require the presence of an exogenous reducing agent or hydrogen peroxide. The Cu2+–arene system does not cleave DNA under anaerobic conditions. Catalase, sodium azide as well as bathocuproine, a specific chelator of Cu(I), completely inhibit the reaction. Our results suggest that Cu(I) ions, superoxide radical and singlet oxygen participate in this reaction. It was shown by EPR and spin traps that the reaction proceeds with the formation of alkoxyl radicals capable of inducing breaks in DNA molecules. An efficient cleavage of DNA in the Cu(II)–o-bromobenzoic acid system requires the generation of radicals under the conditions of formation of a specific copper–DNA–o-bromobenzoic acid complex, in which copper ions are likely to be coordinated with oxygen atoms of the DNA phosphate groups.  相似文献   

15.
We have investigated the action of the chemotherapeutic agent Fe(II)-bleomycin on yeast tRNA(Phe), an RNA of known three-dimensional structure. In the absence of Mg2+ ions, the RNA is cleaved preferentially at two major positions, A31 and G53, both of which are located at the terminal base pairs of hairpin loops, and coincide with the location of tight Mg2+ binding sites. A fragment of the tRNA (residues 47-76) containing the T stem-loop is also cleaved specifically at G53. Cleavage of both the intact tRNA and the tRNA fragment is abolished in the presence of physiological concentrations of Mg2+ (> 0.5 mM). Since Fe(II) is not displaced from bleomycin under these conditions, we infer that tight binding of Mg2+ to tRNA excludes productive interactions between Fe(II)-bleomycin and the RNA. These results also show that loss of cleavage is not due to Mg(2+)-dependent formation of tertiary interactions between the D and T loops. In contrast, cleavage of synthetic DNA analogs of the anticodon and T stem-loops is not detectably inhibited by Mg2+, even at concentrations as high as 50 mM. In addition, the site specificities observed in cleavage of RNA and DNA differ significantly. From these results, and from similar findings with other representative RNA molecules, we suggest that the cleavage of RNA by Fe(II)-bleomycin is unlikely to be important for its therapeutic action.  相似文献   

16.
We have investigated cauliflower (Brassica oleracea) topoisomerase II with respect to its interaction with DNA and demonstrate that the enzyme shares the characteristics of topoisomerase II purified from a variety of phylogenetically remote organisms. In the presence of the 2-nitroimidazole Ro 15-0216, cauliflower topoisomerase II-mediated DNA cleavage is extensively stimulated (approximately 20-fold) only at a site recognized as a major cleavage site for the enzyme in the absence of drug. The conservation of the enzyme's DNA specificity in the presence of Ro 15-0216 is in contrast to the effect exerted by traditional topoisomerase II inhibitors, which cause enzyme-mediated cleavage to take place at a multiple number of DNA sites. Ro 15-0216 may therefore prove useful as a tool in the elucidation of the enzyme's DNA interaction sites and its involvement in nucleic acid metabolism in plant cells.  相似文献   

17.
The equilibria and kinetics of the interaction of the Zn(II) and Cu(II) complexes of the macrocyclic polyamine 2,5,8,11-tetraaza[12]-[12](2,9)[1,10]-phenanthrolinophane (Neotrien) with calf thymus DNA have been investigated at pH=7.0 and T=25 degrees C by spectrophotometry, spectrofluorimetry and stopped-flow method. At low dye/polymer ratios both complexes bind to DNA according to the excluded site model. At high dye/polymer ratios the binding displays cooperative features. The logarithm of the binding constant depends linearly on -log[NaCl]. The kinetic results suggest the D + S <==> D, S <==> DS mechanism where the metal complexes (D) react with the DNA sites (S) leading to fast formation of an externally bound form (D,S) which, in turn, is converted into internally bound complex (DS) by intercalation. The binding constants, evaluated as ratios of rate constants, agree with those obtained from equilibrium binding experiments, thus confirming the validity of the proposed model. Fluorescence titrations, where the metal-Neotrien complexes were added to DNA previously saturated with ethidium bromide (EB), show that both complexes displace EB from the DNA cavities. The reverse process, i.e. the addition of excess ethidium to the DNA/metal Neotrien systems, leads to fluorescence recovery for DNA/ZnNeotrien but not for DNA/CuNeotrien. This observation suggests that the binding of CuNeotrien induces deep alterations in the DNA structure. Experiments with Poly(dA-dT)*Poly(dA-dT) and Poly(dG-dC)*Poly(dG-dC) reveal that CuNeotrien mainly affects the structure of the latter polynucleotide.  相似文献   

18.
We have prepared a series of naphthalene hydroperoxides (1-3) which possess hydroperoxy group at gamma-position of imide carbonyl. Upon photoirradiation (greater than 350 nm) hydroperoxides (1-3) decomposed with efficient generation of hydroxyl radical, which was confirmed by esr spin trapping technique using dimethylpyrroline oxide as a spin trapper. All these hydroperoxides induced DNA strand scission upon photoirradiation (greater than 350 nm), especially hydroperoxide 3 cleaved plasmid phi X 174 DNA (Form I) to give nicked (Form II) and linear (Form III) DNA even at 1 microM concentration. Further, it was observed that 3 exclusively cleaved DNA at the 5'-G site of -GG-sequence.  相似文献   

19.
The use of free lanthanide ions and their complexes for plasmid DNA pBR322 and chromosomal DNA cleavage was studied. Plasmid pBR322 DNA was treated by lanthanide chlorides (Eu(3+), La(3+), Nd(3+), Pr(3+), Gd(3+)) in HEPES buffer (pH 7.0, 7.5 and 8.0) at 24, 37, 50, 63, and 76 degrees C. The formation of linear and nicked plasmid forms was investigated depending on the reaction conditions. Heterogeneous lanthanide complexes of ethylenediamine tetraacetic acid (EDTA) immobilized on insoluble methacrylate support and iminodiacetic acid (IDA) immobilized on styrene support were used as catalysts plasmid for DNA pBR322 cleavage, too. The temperature of reaction mixture had substantial influence on cleavage rate. The precipitation of DNA occurred during the measurement of interactions between chromosomal DNA and La(3+) ions.  相似文献   

20.
4-Benzylamino-(and 4-chloromethyl)-2-nitro-beta-D-glucuronides (4, 10) and their 2-substituted-4-nitro regioisomers (7, 13) were prepared by glycosidation of the 3-nitro-4-hydroxy- and the 2-hydroxy-5-nitro-benzylic alcohol, respectively, with a glucuronyl donor. Carbonate activation followed by reaction with benzylamine or methanesulfonyl chloride afforded, after complete deprotection, the target molecules 4, 7, 10 and 13. These compounds have been synthesized to determine whether these molecules are (or not) glucuronidase inhibitors. After incubation with bovine liver beta-glucuronidase, none of the cleavage products (the titled quinone-methides) showed to be irreversible inhibitors of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号