共查询到20条相似文献,搜索用时 10 毫秒
1.
Guo K Lukacik P Papagrigoriou E Meier M Lee WH Adamski J Oppermann U 《The Journal of biological chemistry》2006,281(15):10291-10297
Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis. 相似文献
2.
All-trans-retinol is the common precursor of the active retinoids 11-cis-retinal, all-trans-retinoic acid (atRA) and 9-cis-retinoic acid (9cRA). Genetic and biochemical data supports an important role of the microsomal members of the short chain dehydrogenases/reductases (SDRs) in the first oxidative conversion of retinol into retinal. Several retinol dehydrogenases of this family have been reported in recent years. However, the structural and functional data on these enzymes is limited. The prototypic enzyme RDH5 and the related enzyme CRAD1 have been shown to face the lumen of the endoplasmic reticulum (ER), suggesting a compartmentalized synthesis of retinal. This is a matter of debate as a related enzyme has been proposed to have the opposite membrane topology. Recent data indicates that RDH5, and presumably other members of the SDRs, occur as functional homodimers, and need to interact with other proteins for proper intracellular localization and catalytic activity. Further analyses on the compartmentalization, membrane topology, and functional properties of microsomal retinol dehydrogenases, will give important clues about how retinoids are processed. 相似文献
3.
4.
Moon HJ Tiwari MK Singh R Kang YC Lee JK 《Applied and environmental microbiology》2012,78(9):3079-3086
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156. 相似文献
5.
6.
Grimm C Maser E Möbus E Klebe G Reuter K Ficner R 《The Journal of biological chemistry》2000,275(52):41333-41339
The crystal structure of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni (3alpha-HSDH) as well as the structure of its binary complex with NAD(+) have been solved at 1.68-A and 1.95-A resolution, respectively. The enzyme is a member of the short chain dehydrogenase/reductase (SDR) family. Accordingly, the active center and the conformation of the bound nucleotide cofactor closely resemble those of other SDRs. The crystal structure reveals one homodimer per asymmetric unit representing the physiologically active unity. Dimerization takes place via an interface essentially built-up by helix alphaG and strand betaG of each subunit. So far this type of intermolecular contact has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSDH by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure. 相似文献
7.
Ziegler J Voigtländer S Schmidt J Kramell R Miersch O Ammer C Gesell A Kutchan TM 《The Plant journal : for cell and molecular biology》2006,48(2):177-192
Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum, 69 show increased expression in morphinan alkaloid-containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7-epi-salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo-keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism. 相似文献
8.
9.
Retinol dehydrogenase (RDH), the enzyme that catalyzes the reduction of all-trans-retinal to all-trans-retinol within the photoreceptor outer segment, was the first visual cycle enzymatic activity to be identified. Previous work has shown that this enzyme utilizes NADPH, shows a marked preference for all-trans-retinal over 11-cis-retinal, and is tightly associated with the outer segment membrane. This paper reports the identification of a novel member of the short chain dehydrogenase/reductase family, photoreceptor RDH (prRDH), using subtraction and normalization of retina cDNA, high throughput sequencing, and data base homology searches to detect retina-specific genes. Bovine and human prRDH are highly homologous and are most closely related to 17-beta-hydroxysteroid dehydrogenase 1. The enzymatic properties of recombinant bovine prRDH closely match those previously reported for RDH activity in crude bovine rod outer segment preparations. In situ hybridization and RNA blotting show that the PRRDH gene is expressed specifically in photoreceptor cells, and protein blotting and immunocytochemistry show that prRDH localizes exclusively to both rod and cone outer segments and that prRDH is tightly associated with outer segment membranes. Taken together, these data indicate that prRDH is the enzyme responsible for the reduction of all-trans-retinal to all-trans-retinol within the photoreceptor outer segment. 相似文献
10.
Divalent metal-dependent catalysis and cleavage specificity of CSP41, a chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily 下载免费PDF全文
CSP41 is a ubiquitous chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase (SDR) superfamily. To help elucidate the role of CSP41 in chloroplast gene regulation, the mechanisms that determine its substrate recognition and catalytic activity were investigated. A divalent metal is required for catalysis, most probably to provide a nucleophile for cleavage 5′ to the phosphodiester bond, and may also participate in cleavage site selection. This requirement distinguishes CSP41 from other Rossman fold-containing proteins from the SDR superfamily, including several RNA-binding proteins and endonucleases. CSP41 is active only in the presence of MgCl2 and CaCl2. Although Mg2+- and Ca2+-activated CSP41 cleave at identical sites in the single-stranded regions of a stem–loop-containing substrate, Mg2+-activated CSP41 was also able to cleave within the double-stranded region of the stem–loop. Mixed metal experiments with Mg2+ and Ca2+ suggest that CSP41 contains a single divalent metal-binding site which is non-selective, since Mn2+, Co2+ and Zn2+ compete with Mg2+ for binding, although there is no activity in their presence. Using site-directed mutagenesis, we identified three residues, Asn71, Asp89 and Asp103, which may form the divalent metal-binding pocket. The activation constant for Mg2+ (KA,Mg = 2.1 ± 0.4 mM) is of the same order of magnitude as the stromal Mg2+ concentrations, which fluctuate between 0.5 and 10 mM as a function of light and of leaf development. These changes in stromal Mg2+ concentration may regulate CSP41 activity, and thus cpRNA stability, during plant development. 相似文献
11.
12.
Nitric oxide (NO) supposedly derived via L-arginine-NO synthase (NOS) pathway has been implicated in inhibiting steroidogenesis by binding the heme moiety of steroidogenic enzymes. Previously, nitrite, and to a lesser extent nitrate ions inhibited steroidogenesis via NO by hitherto unknown reduction mechanism. Recently, a putative mammalian nitrite reductase activity ascribed to complex III of mitochondrial respiratory chain complexes (MRCC) has been reported, where MRCC inhibitors reduced NO production from nitrite variably. We thus studied the effects of MRCC inhibitors on testosterone production in mouse Leydig tumor cells (MLTC-1) without (basal) or with human chorionic gonadotropin (hCG) stimulation. In stimulated MLTC-1, MRCC inhibitors decreased testosterone production, order being: complex III (antimycin A and myxothiazol) > complex I (rotenone) > complex II (thenoyltrifluoroacetone), while cAMP production increased inversely. In unstimulated MLTC-1, MRCC inhibitors in same order, increased basal testosterone production, which correlated inversely with the percentage inhibition of NO production, with one exception; while antimycin A did not inhibit NO production in the nitrite reductase study mentioned above, it increased basal testosterone production in the present study. While MLTC-1 expressed mRNA for endothelial and neuronal, but not inducible NOS, various stimulators and inhibitors of L-arginine-NOS pathway had no effect on basal testosterone production in MLTC-1 or fresh Balb/c Leydig cells. Moreover, hCG increased nitrate uptake into MLTC-1, which suggests the gonadotropin aids nitrite and nitrate ions in their steroidogenesis inhibitory activity. In conclusion, this study supports the existence of a surrogate mammalian nitrite reductase and the dormancy of L-arginine-NOS pathway in MLTC-1. 相似文献
13.
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket. 相似文献
14.
15.
16.
9-cis-Retinoic acid activates retinoid X receptors, which serve as heterodimeric partners with other nuclear hormone receptors, yet the enzymology of its physiological generation remains unclear. Here, we report the identification and molecular/enzymatic characterization of a previously unknown member of the short-chain dehydrogenase/reductase family, CRAD3 (cis-retinoid/androgen dehydrogenase, type 3), which catalyzes the first step in 9-cis-retinoic acid biosynthesis, the conversion of 9-cis-retinol into 9-cis-retinal. CRAD3 shares amino acid similarity with other retinoid/steroid short-chain dehydrogenases/reductases: CRAD1, CRAD2, and RDH4. Relative to CRAD1, CRAD3 has greater 9-cis-retinol/all-trans-retinol discrimination and lower efficiency as an androgen dehydrogenase. CRAD3 has apparent efficiency (V/K(m)) for 9-cis-retinol about equivalent to that for CRAD1 and 3 orders of magnitude greater than that for RDH4. (CRAD2 does not recognize 9-cis-retinol as a substrate). CRAD3 contributes to 9-cis-retinoic acid production in intact cells, in conjunction with each of three retinal dehydrogenases that recognize 9-cis-retinal (RALDH1/AHD2, RALDH2, and ALDH12). Liver and kidney, two tissues reportedly with the highest concentrations of 9-cis-retinoids, show the most intense mRNA expression of CRAD3, but expression also occurs in testis, lung, small intestine, heart, and brain. These data are consistent with the participation of CRAD3 in the biogeneration of 9-cis-retinoic acid. 相似文献
17.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1), a member of the short chain dehydrogenase/reductase (SDR) family, is responsible for the biosynthesis of all active estrogens. The crystal structures of two C19-steroid ternary complexes (17beta-HSD1-androstanedione-NADP and 17beta-HSD1-androstenedione-NADP) reveal the critical role of Leu149 in regulating the substrate specificity and provide novel insight into the different fates of a conserved glutamate residue in the estrogen-specific proteins upon the binding of the keto and hydroxyl groups of steroids. The whole NADP molecule can be unambiguously defined in the NADP binary complex, whereas both ternary complexes show that the nicotinamide moiety of NADP cannot be located in the density maps. In both ternary complexes, the expected position of carboxamide oxygen of NADP is occupied by a water molecule, which makes a bifurcated hydrogen bond with the O3 of C19-steroid and the main chain nitrogen of Val188. These results demonstrate that the hydrogen bonding interaction between the main chain amide group and the carboxamide group of NAD(P)(H) plays an important role in anchoring the nicotinamide ring to the enzyme. This finding is substantiated by structural analyses of all 33 NAD(P)(H) complexes of different SDR proteins, because 29 structures of 33 show this interaction. This common feature reveals a general mechanism among the SDR family, providing a rational basis for inhibitor design against biologically relevant SDR targets. 相似文献
18.
Tiwari MK Singh RK Singh R Jeya M Zhao H Lee JK 《The Journal of biological chemistry》2012,287(23):19429-19439
The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (K(d)) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. 相似文献
19.
Lee LH Gigliotti F Wright TW Simpson-Haidaris PJ Weinberg GA Haidaris CG 《Gene》2000,242(1-2):141-150
Expression screening of a Pneumocystis carinii-infected mouse lung cDNA library with specific monoclonal antibodies (mAbs) led to the identification of a P. carinii cDNA with extensive homology to subtilisin-like proteases, particularly fungal kexins and mammalian prohormone convertases. The 3.1 kb cDNA contains a single open reading frame encoding 1011 amino acids. Structural similarities to fungal kexins in the deduced primary amino acid sequence include a putative proenzyme domain delineated by a consensus autocatalytic cleavage site (Arg-Glu-Lys-Arg), conserved Asp, His, Asn and Ser residues in the putative catalytic domain, a hydrophobic transmembrane spanning domain, and a carboxy-terminal cytoplasmic domain with a conserved tyrosine motif thought to be important for localization of the protease in the endoplasmic reticulum and/or Golgi apparatus. Based on these structural similarities and the classification of P. carinii as a fungus, the protease was named KEX1. Southern blotting of mouse P. carinii chromosomes localized kex1 to a single chromosome of approximately 610 kb. Southern blotting of restriction enzyme digests of genomic DNA from P. carinii-infected mouse lung demonstrated that kex1 is a single copy gene. The function of kexins in other fungi suggests that KEX1 may be involved in the post-translational processing and maturation of other P. carinii proteins. 相似文献
20.
Belyaeva OV Lee SA Adams MK Chang C Kedishvili NY 《The Journal of biological chemistry》2012,287(12):9061-9071
The enzymes responsible for the rate-limiting step in retinoic acid biosynthesis, the oxidation of retinol to retinaldehyde, during embryogenesis and in adulthood have not been fully defined. Here, we report that a novel member of the short chain dehydrogenase/reductase superfamily, frog sdr16c5, acts as a highly active retinol dehydrogenase (rdhe2) that promotes retinoic acid biosynthesis when expressed in mammalian cells. In vivo assays of rdhe2 function show that overexpression of rdhe2 in frog embryos leads to posteriorization and induction of defects resembling those caused by retinoic acid toxicity. Conversely, antisense morpholino-mediated knockdown of endogenous rdhe2 results in phenotypes consistent with retinoic acid deficiency, such as defects in anterior neural tube closure, microcephaly with small eye formation, disruption of somitogenesis, and curved body axis with bent tail. Higher doses of morpholino induce embryonic lethality. Analyses of retinoic acid levels using either endogenous retinoic acid-sensitive gene hoxd4 or retinoic acid reporter cell line both show that the levels of retinoic acid are significantly decreased in rdhe2 morphants. Taken together, these results provide strong evidence that Xenopus rdhe2 functions as a retinol dehydrogenase essential for frog embryonic development in vivo. Importantly, the retinol oxidizing activity of frog rdhe2 is conserved in its mouse homologs, suggesting that rdhe2-related enzymes may represent the previously unrecognized physiologically relevant retinol dehydrogenases that contribute to retinoic acid biosynthesis in higher vertebrates. 相似文献