首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian eggs, the fertilizing sperm evokes intracellular Ca2+ ([Ca2+]i) oscillations that are essential for initiation of egg activation and embryonic development. Although the exact mechanism leading to initiation of [Ca2+]i oscillations still remains unclear, accumulating studies suggest that a presently unknown substance, termed sperm factor (SF), is delivered from the fertilizing sperm into the ooplasm and triggers [Ca2+]i oscillations. Based on findings showing that production of inositol 1,4,5-trisphosphate (IP3) underlies the generation of [Ca2+]i oscillations, it has been suggested that SF functions either as a phospholipase C (PLC), an enzyme that catalyzes the generation of IP3, or as an activator of a PLC(s) pre-existing in the egg. This review discusses the role of SF as the molecule responsible for the production of IP3 and the initiator of [Ca2+]i oscillations in mammalian fertilization, with particular emphasis on the possible involvement of egg- and sperm-derived PLCs, including PLCzeta, a novel sperm specific PLC.  相似文献   

2.
Fertilization in all species studied to date induces an increase in the intracellular concentration of free calcium ions ([Ca2+]i) within the egg. In mammals, this [Ca2+]i signal is delivered in the form of long-lasting [Ca2+]i oscillations that begin shortly after fusion of the gametes and persist beyond the time of completion of meiosis. While not fully elucidated, recent evidence supports the notion that the sperm delivers into the ooplasm a trigger of oscillations, the so-called sperm factor (SF). The recent discovery that mammalian sperm harbor a specific phospholipase C (PLC), PLCzeta has consolidated this view. The fertilizing sperm, and presumably PLCzeta promote Ca2+ release in eggs via the production of inositol 1,4,5-trisphosphate (IP3), which binds and gates its receptor, the type-1 IP3 receptor, located on the endoplasmic reticulum, the Ca2+ store of the cell. Repetitive Ca2+ release in this manner results in a positive cumulative effect on downstream signaling molecules that are responsible for the completion of all the events comprising egg activation. This review will discuss recent advances in our understanding of how [Ca2+]i oscillations are initiated and regulated in mammals, highlight areas of discrepancies, and emphasize the need to better characterize the downstream molecular cascades that are dependent on [Ca2+]i oscillations and that may impact embryo development.  相似文献   

3.
A cytosolic sperm protein(s), referred to as sperm factor (SF), is delivered into eggs by the sperm during mammalian fertilization to induce repetitive increases in the intracellular concentration of free Ca2+ ([Ca2+]i) that are referred to as [Ca2+]i oscillations. [Ca2+]i oscillations are essential for egg activation and early embryonic development. Recent evidence shows that the novel sperm-specific phospholipase C (PLC), PLCzeta, may be the long sought after [Ca2+]i oscillation-inducing SF. Here, we demonstrate the complete extraction of SF from porcine sperm and show that regardless of the method of extraction a single molecule/complex appears to be responsible for the [Ca2+]i oscillation-inducing activity of these extracts. Consistent with this notion, all sperm fractions that induced [Ca2+]i oscillations, including FPLC-purified fractions, exhibited high in vitro PLC activity at basal Ca2+ levels (0.1-5 microM), a hallmark of PLCzeta. Notably, we detected immunoreactive 72-kDa PLCzeta in an inactive fraction, and several fractions capable of inducing oscillations were devoid of 72-kDa PLCzeta. Nonetheless, in the latter fractions, proteolytic fragments, presumably corresponding to cleaved forms of PLCzeta, were detected by immunoblotting. Therefore, our findings corroborate the hypothesis that a sperm-specific PLC is the main component of the [Ca2+]i oscillation-inducing activity of sperm but provide evidence that the presence of 72-kDa PLCzeta does not precisely correspond with the Ca2+ releasing activity of porcine sperm fractions.  相似文献   

4.
Phospholipase C-zeta (PLCzeta), a strong candidate of the egg-activating sperm factor, causes intracellular Ca2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCzeta. Changes in the localization of expressed PLCzeta were investigated by tagging with a fluorescent protein. PLCzeta began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCzeta in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCzeta was recognized in every embryo up to blastocyst. Thus, PLCzeta exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca2+ oscillations in early embryogenesis.  相似文献   

5.
Fertilization in mammalian eggs is characterized by the presence of intracellular calcium ([Ca(2+)]i) oscillations. In mouse eggs, these oscillations cease after a variable period of time and this is accompanied by a decrease in inositol 1,4,5-trisphosphate receptor (IP3R) responsiveness and down-regulation of the IP3R type 1 (IP3R-1). To investigate the signaling pathway responsible for inducing IP3R-1 down-regulation during fertilization, mouse eggs were exposed to or injected with several Ca(2+)-releasing agonists and the amounts of IP3R-1 immunoreactivity evaluated by Western blotting. Exposure to ethanol or ionomycin, which induce a single [Ca(2+)]i rise, failed to signal down-regulation of IP3R-1. However, [Ca(2+)]i oscillations induced by injection of boar sperm fractions (SF), which presumably stimulate production of IP3, or adenophostin A, an IP3R agonist, both induced down-regulation of IP3R-1 of a magnitude similar to or greater than that observed after fertilization. Exposure to thimerosal, an oxidizing agent that modifies the IP3R without stimulating production of IP3, also initiated down-regulation of IP3R-1, although oscillations initiated by SrCl(2) failed to evoke down-regulation of IP3R-1. The degradation of IP3R-1 in mouse eggs appears to be mediated by the proteasome pathway because it was inhibited by preincubation with lactacystin, a very specific proteasome inhibitor. We therefore suggest that persistent stimulation of the phosphoinositide pathway in mouse eggs by the sperm during fertilization or by injection of SF leads to down-regulation of the IP3R-1.  相似文献   

6.
A sperm-specific phospholipase (PL) C, termed PLCzeta, is proposed to be the soluble sperm factor that induces Ca(2+) oscillations in mammalian eggs and, thus, initiates egg activation in vivo. We report that sperm from transgenic mice expressing short hairpin RNAs targeting PLCzeta mRNA have reduced amounts of PLCzeta protein. Sperm derived from these transgenic mice trigger patterns of Ca(2+) oscillations following fertilization in vitro that terminate prematurely. Consistent with the perturbation in patterns of Ca(2+) oscillations is the finding that mating of transgenic founder males to females results in lower rates of egg activation and no transgenic offspring. These data strongly suggest that PLCzeta is the physiological trigger of Ca(2+) oscillations required for activation of development.  相似文献   

7.
The calcium ([Ca(2+)](i)) oscillations associated with mammalian fertilization and required to induce egg activation occur during M-phase stages of the cell cycle. The molecular mechanisms underlying this regulation remain unproven and may be multi-layered. Type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R-1), which mediate [Ca(2+)](i) release during fertilization, have emerged as key regulatory units because they contain multiple phosphorylation consensus sites and undergo changes in cellular location and mass prior to and following fertilization. Hence, control of IP(3)R-1 function together with regulation of PLCzeta activity, the putative sperm factor, may combine to impart cell cycle and species-specific [Ca(2+)](i) oscillations characteristic of mammalian fertilization.  相似文献   

8.
Sperm-specific phospholipase Czeta (PLCzeta) is known to induce intracellular Ca(2+) oscillations and subsequent early embryonic development when expressed in mouse eggs by injection of RNA encoding PLCzeta (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development 129, 3533-3544). The present study addressed characteristics of purified mouse PLCzeta protein that was synthesized using the baculovirus/Sf9 cell expression system. Microinjection of recombinant PLCzeta protein into mouse eggs induced serial Ca(2+) spikes quite similar to those produced by the injection of sperm extract, probably because of repetitive Ca(2+) release from the endoplasmic reticulum caused by continuously produced inositol 1,4,5-trisphosphate. Recombinant PLCdelta1 also induced Ca(2+) oscillations, but a 20-fold higher concentration was required compared with PLCzeta. In the enzymatic assay of phosphatidylinositol 4,5-bisphosphate hydrolyzing activity in vitro at various calcium ion concentrations ([Ca(2+)]), PLCzeta exhibited a significant activity at [Ca(2+)] as low as 10 nm and had 70% maximal activity at 100 nm [Ca(2+)] that is usually the basal intracellular calcium ion concentration level of cells. On the other hand, the activity of PLCdelta1 increased at a [Ca(2+)] between 1 and 30 microm. EC(50) was 52 nm for PLCzeta and 5.7 microm for PLCdelta1. Thus, PLCzeta has an approximately 100-fold higher Ca(2+) sensitivity than PLCdelta1. The ability of purified PLCzeta protein to induce Ca(2+) oscillations qualifies PLCzeta as a proper candidate of the mammalian egg-activating sperm factor. Furthermore, such a high Ca(2+) sensitivity of PLC activity as PLCzeta that can be active in cells at the resting state is thought to be an appropriate characteristic of the sperm factor, which is introduced into the ooplasm upon sperm-egg fusion, triggers Ca(2+) release first, and maintains Ca(2+) oscillations.  相似文献   

9.
Injection of a porcine cytosolic sperm factor (SF) or of a porcine testicular extract into mammalian eggs triggers oscillations of intracellular free calcium ([Ca(2+)](i)) similar to those initiated by fertilization. To elucidate whether SF activates the phosphoinositide (PI) pathway, mouse eggs or SF were incubated with U73122, an inhibitor of events leading to phospholipase C (PLC) activation and/or of PLC itself. In both cases, U73122 blocked the ability of SF to induce [Ca(2+)](i) oscillations, although it did not inhibit Ca(2+) release caused by injection of inositol 1,4,5-triphosphate (IP(3)). The inactive analogue, U73343, had no effect on SF-induced Ca(2+) responses. To determine at the single cell level whether SF triggers IP(3) production concomitantly with a [Ca(2+)](i) rise, SF was injected into Xenopus oocytes and IP(3) concentration was determined using a biological detector cell combined with capillary electrophoresis. Injection of SF induced a significant increase in [Ca(2+)](i) and IP(3) production in these oocytes. Using ammonium sulfate precipitation, chromatographic fractionation, and Western blotting, we determined whether PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which are present in sperm and testis, are responsible for the Ca(2+) activity in the extracts. Our results revealed that active fractions do not contain PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which were present in inactive fractions. We also tested whether IP(3) could be the sensitizing stimulus of the Ca(2+)-induced Ca(2+) release mechanism, which is an important feature of fertilized and SF-injected eggs. Eggs injected with adenophostin A, an IP(3) receptor agonist, showed enhanced Ca(2+) responses to CaCl(2) injections. Thus, SF, and probably sperm, induces [Ca(2+)](i) rises by persistently stimulating IP(3) production, which in turn results in long-lasting sensitization of Ca(2+)-induced Ca(2+) release. Whether SF is itself a PLC or whether it acts upstream of the egg's PLCs remains to be elucidated.  相似文献   

10.
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.  相似文献   

11.
Sperm-specific phospholipase C-zeta (PLCzeta) induces Ca2+ oscillations and egg activation when injected into mouse eggs. PLCzeta has such a high Ca2+ sensitivity of PLC activity that the enzyme can be active in resting cells at approximately 100 nM Ca2+, suitable for a putative sperm factor to be introduced into the egg at fertilization (Kouchi, Z., Fukami, K., Shikano, T., Oda, S., Nakamura, Y., Takenawa, T., and Miyazaki, S. (2004) J. Biol. Chem. 279, 10408-10412). In the present structure-function analysis, deletion of EF1 and EF2 of the N-terminal four EF-hand domains caused marked reduction of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-hydrolyzing activity in vitro and loss of Ca2+ oscillation-inducing activity in mouse eggs after injection of RNA encoding the mutant. However, deletion of EF1 and EF2 or mutation of EF1 or EF2 at the x and z positions of the putative Ca2+-binding loop little affected the Ca2+ sensitivity of the PLC activity, whereas deletion of EF1 to EF3 caused 12-fold elevation of the EC50 of Ca2+ concentration. Thus, EF1 and EF2 are important for the PLCzeta activity, and EF3 is responsible for its high Ca2+ sensitivity. Deletion of four EF-hand domains or the C-terminal C2 domain caused complete loss of PLC activity, indicating that both regions are prerequisites for PLCzeta activity. Screening of interactions between the C2 domain and phosphoinositides revealed that C2 has substantial affinity to PI(3)P and, to the lesser extent, to PI(5)P but not to PI(4,5)P2 or acidic phospholipids. PI(3)P and PI(5)P reduced PLCzeta activity in vitro, suggesting that the interaction could play a role for negative regulation of PLCzeta.  相似文献   

12.
At fertilization in mammals, the sperm activates the egg by inducing a series of oscillations in the intracellular free Ca(2+) concentration. There is evidence showing that this oscillatory event is triggered by a sperm-derived protein factor which diffuses into egg cytoplasm after gamete membrane fusion. At present the identity of this factor and its precise mechanism of action is unknown. Here, we studied the specificity of action of the sperm factor in triggering Ca(2+) oscillations in mammalian eggs. In doing so, we examined the patterns of Ca(2+) signaling in mouse eggs, zygotes, parthenogenetic eggs and maturing oocytes following the stimulation of bovine sperm extracts which contain the sperm factor. It is observed that the sperm factor could induce Ca(2+) oscillations in metaphase eggs, maturing oocytes and parthenogenetically activated eggs but not in the zygotes. We present evidence that Ca(2+) oscillations induced by the sperm factor require a maternal machinery. This machinery functions only once in mammalian oocytes and eggs, and is inactivated by sperm-derived components but not by parthenogenetic activation. In addition, it is found that neither InsP(3) receptor sensitivity to InsP(3) nor Ca(2+) pool size are the determinants that cause the fertilized egg to lose its ability to generate sperm-factor-induced Ca(2+) oscillations at metaphase. In conclusion, our study suggests that the orderly sequence of Ca(2+) oscillations in mammalian eggs at fertilization is critically dependent upon the presence of a functional maternal machinery that determines whether the sperm-factor-induced Ca(2+) oscillations can persist.  相似文献   

13.
The sperm-specific phospholipase C-zeta (PLCzeta) elicits fertilization-like Ca2+ oscillations and activation of embryo development when microinjected into mammalian eggs (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development (Camb.) 129, 3533-3544; Cox, L. J., Larman, M. G., Saunders, C. M., Hashimoto, K., Swann, K., and Lai, F. A. (2002) Reproduction 124, 611-623). PLCzeta may represent the physiological stimulus for egg activation and development at mammalian fertilization. PLCzeta is the smallest known mammalian PLC isozyme, comprising two EF hand domains, a C2 domain, and the catalytic X and Y core domains. To gain insight into PLCzeta structure-function, we assessed the ability of PLCzeta and a series of domain-deletion constructs to cause phosphatidylinositol 4,5-bisphosphate hydrolysis in vitro and also to generate cytoplasmic Ca2+ changes in intact mouse eggs. PLCzeta and the closely related PLCdelta1 had similar K(m) values for phosphatidylinositol 4,5-bisphosphate, but PLCzeta was around 100 times more sensitive to Ca2+ than was PLCdelta1. Notably, specific phosphatidylinositol 4,5-bisphosphate hydrolysis activity was retained in PLCzeta constructs that had either EF hand domains or the C2 domain removed, or both. In contrast, Ca2+ sensitivity was greatly reduced when either one, or both, of the EF hand domains were absent, and the Hill coefficient was reduced upon deletion of the C2 domain. Microinjection into intact mouse eggs revealed that all domain-deletion constructs were ineffective at initiating Ca2+ oscillations. These data suggest that the exquisite Ca2+-dependent features of PLCzeta regulation are essential for it to generate inositol 1,4,5-trisphosphate and Ca2+ oscillations in intact mouse eggs.  相似文献   

14.
Although mitogen-activated protein kinase (MAPK) is a well-known cell cycle regulator, emerging studies have also implicated its activity in the regulation of intracellular calcium concentration ([Ca2+](i)) and secretion. Those studies raise the hypothesis that MAPK activity during oocyte maturation and early fertilization is required for normal egg Ca2+ oscillations and cortical granule (CG) secretion. We extend the findings of [Lee, B., Vermassen, E., Yoon, S.-Y., Vanderheyden, V., Ito, J., Alfandari, D., De Smedt, H., Parys, J.B., Fissore, R.A., 2006. Phosphorylation of IP(3)R1 and the regulation of [Ca2+](i) responses at fertilization: a role for the MAP kinase pathway. Development 133, 4355-4365] by demonstrating acute effects on Ca2+ oscillation frequency, amplitude, and duration in fertilized mouse eggs matured in vitro with the MAPK inhibitor, U0126. Frequency was increased, whereas amplitude and duration were greatly decreased. These effects were significantly reduced in eggs matured in vivo and fertilized in the presence of the inhibitor. Ionomycin studies indicated that intracellular Ca2+ stores were differentially affected in eggs matured in vitro with U0126. Consistent with these effects on [Ca2+](i) elevation, fertilization-induced CG exocytosis and metaphase II exit were also reduced in in vitro-matured eggs with U0126, but not in those similarly treated after in vivo maturation. These results indicate that MAPK targets Ca2+ regulatory proteins during both maturation and fertilization, as well as provide a new hypothesis for MAPK function, which is to indirectly regulate events of early development by controlling Ca2+ oscillation parameters.  相似文献   

15.
At fertilization in mammals, the sperm activates development by causing a prolonged series of intracellular Ca(2+) oscillations that are generated by increased production of inositol trisphosphate (InsP(3)). It appears that the sperm initiates InsP(3) generation via the introduction of a sperm factor into the egg after gamete membrane fusion. We recently identified a sperm-specific form of phospholipase C (PLC), referred to as PLCzeta(zeta). We review the evidence that PLCzeta represents the sperm factor that activates development of the egg and discuss the characteristics of PLCzeta that distinguish it from the somatic forms of PLC.  相似文献   

16.
Sperm entry in mammalian eggs initiates oscillations in the concentration of free calcium ([Ca(2+)](i)). In mouse eggs, oscillations start at metaphase II (MII) and conclude as the zygotes progress into interphase and commence pronuclear (PN) formation. The inositol 1,4,5-trisphosphate receptor (IP(3)R-1), which underlies the oscillations, undergoes degradation during this transition, suggesting that one or more of the eggs' Ca(2+)-releasing machinery components may be regulated in a cell cycle-dependent manner, thereby coordinating [Ca(2+)](i) responses with the cell cycle. To ascertain the site(s) of interaction, we initiated oscillations at different stages of the cell cycle in zygotes with different IP(3)R-1 mass. In addition to sperm, we used two other agonists: porcine sperm factor (pSF), which stimulates production of IP(3), and adenophostin A, a non-hydrolyzable analogue of IP(3). None of the agonists tested induced oscillations at interphase, suggesting that neither decreased IP(3)R-1 mass nor lack of production or excessive IP(3) degradation can account for the insensitivity to IP(3) at this stage. Moreover, the releasable Ca(2+) content of the stores did not change by interphase, but it did decrease by first mitosis. More importantly, experiments revealed that IP(3)R-1 sensitivity and possibly IP(3) binding were altered at interphase, and our data demonstrate stage-specific IP(3)R-1 phosphorylation by M-phase kinases. Accordingly, increasing the activity of M-phase kinases restored the oscillatory-permissive state in zygotes. We therefore propose that the restriction of oscillations in mouse zygotes to the metaphase stage may be coordinated at the level of IP(3)R-1 and that this involves cell cycle stage-specific receptor phosphorylation.  相似文献   

17.
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free Ca2+ that is initiated at the point of sperm-egg fusion and traverses the entire width of the egg. This Ca2+ wave involves an increase in inositol-1,4,5-trisphosphate (IP3) resulting from the interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. The extraordinarily large size of this cell (1.2 mm diameter) together with the small surface region of sperm-receptor activation makes special demands on the IP3-dependent Ca2+ mobilizing machinery. We propose a detailed model of the fertilization Ca2+ wave in Xenopus eggs that requires an accompanying wave of IP3 production. While the Ca2+ wave is initiated by a localized increase of IP3 near the site of sperm-egg fusion, the Ca2+ wave propagates via IP3 production correlated with the Ca2+ wave-possibly via Ca(2+)-mediated PLC activation. Such a Ca(2+)-mediated IP(3) production wave has not been required previously to explain the fertilization Ca2+ wave in eggs; we argue this is necessary to explain the observed IP3 dynamics in Xenopus eggs. To test our hypothesis, we have measured the IP3 levels from 20 nl "sips" of the egg cortex during wave propagation. We were unable to detect the low IP3 levels in unfertilized eggs, but after fertilization, [IP3] ranged from 175 to 430 nM at the sperm entry point and from 120 to 700 nM 90 degrees away once the Ca2+ wave passed that region about 2 min after fertilization. Prior to the Ca2+ wave reaching that region the IP3 levels were undetectable. Since significant IP3 could not diffuse to this region from the sperm entry point within 2 min, this observation is consistent with a regenerative wave of IP3 production.  相似文献   

18.
Mechanism of Ca2+ release at fertilization in mammals.   总被引:5,自引:0,他引:5  
At fertilization in mammals the sperm triggers a series of oscillations in intracellular Ca2+ within the egg. These Ca2+ oscillations activate the development of the egg into an embryo. It is not known how the sperm triggers these Ca2+ oscillations. There are currently three different theories for Ca2+ signaling in eggs at fertilization. One idea is that the sperm acts as a conduit for Ca2+ entry into the egg after membrane fusion. Another idea is that the sperm acts upon plasma membrane receptors to stimulate a phospholipase C (PLC) within the egg which generates inositol 1,4, 5-trisphosphate (InsP(3)). We present a third idea that the sperm causes Ca2+ release by introducing a soluble protein factor into the egg after gamete membrane fusion. In mammals this sperm factor is also referred to as an oscillogen because, after microinjection, the factor causes sustained Ca2+ oscillations in eggs. Our recent data in sea urchin egg homogenates and intact eggs suggests that this sperm factor has phospholipase C activity that leads to the generation of InsP(3). We then present a new version of the soluble sperm factor theory of signaling at fertilization. J. Exp. Zool. (Mol. Dev. Evol.) 285:267-275, 1999.  相似文献   

19.
We developed genetically encoded fluorescent inositol 1,4,5-trisphosphate (IP3) sensors that do not severely interfere with intracellular Ca2+ dynamics and used them to monitor the spatiotemporal dynamics of both cytosolic IP3 and Ca2+ in single HeLa cells after stimulation of exogenously expressed metabotropic glutamate receptor 5a or endogenous histamine receptors. IP3 started to increase at a relatively constant rate before the pacemaker Ca2+ rise, and the subsequent abrupt Ca2+ rise was not accompanied by any acceleration in the rate of increase in IP3. Cytosolic [IP3] did not return to its basal level during the intervals between Ca2+ spikes, and IP3 gradually accumulated in the cytosol with a little or no fluctuations during cytosolic Ca2+ oscillations. These results indicate that the Ca2+ -induced regenerative IP3 production is not a driving force of the upstroke of Ca2+ spikes and that the apparent IP3 sensitivity for Ca2+ spike generation progressively decreases during Ca2+ oscillations.  相似文献   

20.
Unfertilized eggs of the newt Cynops pyrrhogaster are arrested at the second meiotic metaphase. The primary signal for egg activation is a transient increase in [Ca2+](i), which is triggered by the fertilizing sperm and propagates over the egg cortex as a Ca2+ wave. We injected an extract of Cynops sperm (SE) into unfertilized eggs and induced a wave-like [Ca2+](i) increase which resulted in activation and resumption of meiosis. The SE-injected eggs showed degradation of cyclin B1 and DNA replication. When SE was boiled or treated with proteinase K before injection, it was unable to cause egg activation. Preinjection of Ca2+ -chelator BAPTA before SE injection inhibited egg activation. These results indicate that a heat-labile and proteinaceous factor in the sperm cytoplasm induces a transient increase in [Ca2+](i) which is required for egg activation. Injection of IP3 into unfertilized eggs caused an increase in [Ca2+](i) and egg activation, but injection of cADP-ribose did not. These results support the hypothesis that Ca2+ release at fertilization occurs via IP3 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号