首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of c-AMP-deficient S. typhimurium mutants in the culture of peritoneal macrophages of white mice and the antibacterial activity of immune macrophages obtained from mice previously immunized with c-AMP-deficient S. typhimurium mutants were studied; c-AMP-deficient mutants were shown to have a lesser cytotoxic effect on macrophages than the initial virulent strain, while retaining their capacity for intracellular proliferation. Immune macrophages acquired the ability to withstand the cytotoxic action of the virulent strain.  相似文献   

2.
Abstract The susceptibility of Salmonella typhimurium LT2 and of S. typhi 1079 to oxygen metabolites were compared. S. typhimurium LT2 and S. typhi 1079 were killed to an equal extent (about 40%) by the xanthine-xanthine oxidase (200 mU/ml) system. Among the various scavengers of oxygen metabolites, catalase alone inhibited the killing of S. typhimurium LT2 and S. typhi 1079 by the xanthine-xanthine oxidase system, indicating that hydrogen peroxide contributed to the killing of Salmonellae . The respiratory burst of murine macrophages was efficiently triggered by the ingestion of S. typhimurium LT2, S. typhimurium SL1102, and S. typhi 1079 and all to the same extent. However, in the range of the concentration of hydrogen peroxide produced by murine macrophages, neither S. typhimurium LT2 nor S. typhi 1079 were killed. Only S. typhimurium SL1102, a rough mutant of S. typhimurium LT2, was markedly susceptible under these conditions. The findings suggest that both S. typhimurium LT2 and S. typhi 1079 are resistant to oxygen-dependent killing mechanisms.  相似文献   

3.
The susceptibility of Salmonella typhimurium LT2 and S. typhi 1079 to oxygen metabolites were compared. S. typhimurium LT2 and S. typhi 1079 were killed to an equal extent (about 40%) by the xanthine-xanthine oxidase (200 mU/ml) system. Among the various scavengers of oxygen metabolites, catalase alone inhibited the killing of S. typhimurium LT2 and S. typhi 1079 by the xanthine-xanthine oxidase system, indicating that hydrogen peroxide contributed to the killing of Salmonellae. The respiratory burst of murine macrophages was efficiently triggered by the ingestion of S. typhimurium LT2, S. typhimurium SL1102, and S. typhi 1079 and all to the same extent. However, in the range of the concentration of hydrogen peroxide produced by murine macrophages, neither S. typhimurium LT2 nor S. typhi 1079 were killed. Only S. typhimurium SL1102, a rough mutant of S. typhimurium LT2, was markedly susceptible under these conditions. The findings suggest that both S. typhimurium LT2 and S. typhi 1079 are resistant to oxygen-dependent killing mechanisms.  相似文献   

4.
The mouse Chromosome 1 locus Ity regulates the extent to which Salmonella typhimurium replicates within the reticuloendothelial cell system (RES) during the first days of infection. If animals are homozygous for the Itys susceptibility allele, the Gram-negative bacterium undergoes rapid net multiplication, and mice die of a typhoid fever-like disease by day 10 of infection. Animals that are homozygous or heterozygous for the resistance allele, Ityr, control net bacterial replication and survive the first phase of salmonellosis. Indirect studies have implicated the resident macrophage as the effector cell for regulation of early in vivo salmonellae growth. To verify this supposition and to evaluate the phenotypic expression of Ity, we developed an in vitro assay to compare kinetics of S. typhimurium growth within Ityr and Itys macrophages. Resident peritoneal and splenic macrophages were used from inbred Ityr and Itys mice and from Ity congeneic mice. With these mice and through the use of radiolabeled S. typhimurium and an avirulent temperature-sensitive mutant of the bacterium, we found that: phagocytosis of S. typhimurium by Ityr and by Itys macrophages was the same; S. typhimurium grew to a greater extent in Itys peritoneal and splenic macrophages than in Ityr cells; Ityr macrophages killed intracellular salmonellae more efficiently than did Itys macrophages. Thus, we have demonstrated directly that Ity is expressed by the macrophage and have shown for the first time with Ity congeneic mice that the basis for differential net growth of virulent S. typhimurium in Ityr and Itys macrophages is a variation in the degree of bacterial kill.  相似文献   

5.
Salmonella species represent a leading cause of gastroenteritis worldwide. More recently, they have been proposed as putative vaccine delivery vehicles in humans. Oral infection with Salmonella leads to invasion of the intestinal epithelial barrier and subsequent interaction with mucosal macrophages. In this study, we investigated the fate of Salmonella typhimurium-infected human macrophages differentiated from blood monocytes by GM-CSF. Wild type S. typhimurium strain SL1344 induced macrophage surface blebbing and caused the release of host cytoplasmic lactate dehydrogenase beginning 30 min post-infection. Three hours later more than 80% of the macrophages in the culture were killed. In contrast, during the same period, macrophages infected with the non-invasive S. typhimurium strain BJ66 remained viable. Chromatin fragmentation is a hallmark of cells undergoing apoptosis. Using TUNEL analysis, we observed chromatin fragmentation in macrophages infected with SL1344 but not in BJ66 infected cells. Consistent with this observation, we found that pretreatment of human macrophages with an inhibitor of caspase-3, a member of the pro-apoptotic enzyme family shown to be involved in S. typhimurium-induced killing of mouse macrophages, reduced SL1344-mediated cytotoxicity by 40%. Our study provides the first evidence that invasive S. typhimurium induces apoptosis in human macrophages that were differentiated from blood monocytes by GM-CSF, and that cell death is a caspase-dependent phenomenon.  相似文献   

6.
Abstract We examined phagosome-lysosome fusion in Salmonella typhi -infected human monocyte-derived macrophages and its relevance to the intracellular survival of this bacterium in vitro. S. typhi was found to survive and multiply in human monocyte-derived macrophages, whereas S. typhimurium was killed easily, indicating that the survival of Salmonella serovars is host-specific. Neither S. typhi nor S. typhimurium inhibited phagosome-lysosome fusion in human monocyte-derived macrophages. No difference between the phagosome-lysosome fusibilities of freshly prepared human monocytes and monocyte-derived macrophages was observed. These results suggest that S. typhi may survive by adapting to the conditions within fused phagolysosomes of human monocyte-derived macrophages.  相似文献   

7.
Serious enteric and extra-intestinal infections with Salmonella typhimurium are very common in many human populations. Phagocytosis is the main defense mechanism against this bacterium; however, the unique structure of S. typhimurium lipopolysaccharide (LPS) makes it resistant to opsonization by complement components. In the present study, the S. typhimurium LPS O-chain was purified and conjugated with tetanus toxoid and the effects of the conjugated vaccine (O-specific polysaccharide tetanus toxoid (O-SP-TT)) on induction of specific antibodies were investigated in a mouse model. In vitro assays measuring phagocytosis in the presence of opsonizing antibodies were performed. Three subcutaneous injections of the O-SP-TT conjugate conferred protection against the intraperitoneal challenge with S. typhimurium and the LD50 was greater for immunized animals than for controls. The mean number of ingested S. typhimirium / mouse peritoneal cell in the presence of sera obtained from immunized mice with purified O-chain, O-SP-TT conjugate, heat-killed bacteria, and negative control were 6.96, 14.24, 15.96, and 6.67, respectively. In summary, we developed an O-SP-TT conjugate that induced opsonizing antibodies that increased phagocytosis, as determined by in vitro assays. In addition, chemiluminescence results, an indicator of oxidative burst, indicated that peritoneal cells respond better to live S. typhimurium cells in the presence of sera obtained from O-SP-TT conjugate immunized mice.  相似文献   

8.
The aim of the present study was to determine whether the difference between the rate of intracellular killing of Salmonella typhimurium by macrophages of salmonella-resistant CBA and salmonella-susceptible C57BL/10 mice also holds for other salmonellae and other bacteria species. After in vivo phagocytosis, the initial rate of in vitro intracellular killing of S. typhimurium phagetype 505, S. typhimurium phagetype 510, and S. typhimurium M206 by macrophages of CBA mice amounted always to approximately 1.7 times the value found for macrophages of C57BL/10 mice (p less than 0.001), indicating that the difference in killing efficiency between CBA and C57BL/10 macrophages holds for various strains of S. typhimurium. However, some other salmonella species, i.e., S. dublin and S. heidelberg, as well as E. coli 054 and 02K1+, Listeria monocytogenes EGD and L347, and Staphylococcus aureus were killed equally efficiently by macrophages of both mouse strains. These findings indicate that the difference between the rates of intracellular killing by macrophages of salmonella-resistant CBA and salmonella-susceptible C57BL/10 does not hold for several other bacteria species and thus might be specific for S. typhimurium. Subsequent experiments showed that the in vivo proliferation of S. typhimurium 510 in the first 2 days after i.v. injection was 2.0-fold to 3.0-fold higher in the spleens and livers of C57BL/10 mice than in those of CBA mice, whereas the in vivo proliferation of S. dublin and S. heidelberg was between 1.0-fold to 1.4-fold higher in the C57BL/10 mice. These findings suggest that the differences between the rate of in vitro intracellular killing of salmonella by CBA and C57BL/10 macrophages are reflected in differences in the rate of in vivo proliferation of these microorganisms in CBA and C57BL/10 mice. To gain insight into the involvement of the oxidative metabolism of CBA and C57BL/10 macrophages in the difference in the rate of intracellular killing of S. typhimurium, the O2 consumption and H2O2 release by resident peritoneal macrophages was determined. The amplitudes of the respiratory burst and the release of H2O2 was identical in macrophages of the two mouse strains after triggering by either preopsonized heat-killed S. typhimurium or phorbol myristic acetate. These findings indicate that the mouse species-associated difference in the intracellular killing of S. typhimurium is not caused by a difference in the oxidative metabolism of CBA and C57BL/10 macrophages.  相似文献   

9.
Chickens over 10 days old, infected orally with virulent salmonellae, were found to remain alive. Histologic investigation showed the development of mild enteritis and more pronounced, lasting for more than two weeks, inflammation of the cecum, dissemination and focal lesions in the liver (granulomas, necrosis). In experiments on the oral immunization of 3-day old chickens the bivalent hybrid of S. typhimurium vaccine strain 274 and S. dublin induced only pronounced blast transformation in lymphatic follicles of the cecum, hyperplasia of activated macrophages and formation of granulomas from these macrophages and lymphocytes. After oral challenge of the immunized chickens with virulent salmonellae of group B (S. typhimurium) and group D (S. enteritidis, S. gallinarum-pullorum) the chickens exhibited sharply pronounced protection against adhesion, colonization and invasion, and a few penetrating bacteria were rapidly destroyed by immune macrophages. Hybrid strain 274/O9 proved to be suitable for use as oral bivalent vaccine against salmonellosis in chickens.  相似文献   

10.
The influence of immunization with pertussis vaccines differing in toxicity on the intensity of the formation of antibodies to heterologous antigens (S. typhi Vi-antigen) and on the resistance of the body to natural infection (S. typhimurium) was studied in mice. The toxicity of pertussis vaccines was found to be related to their capacity for changing immune response to heterologous antigen. In mice showing pronounced toxicosis the injection of pertussis vaccine resulted in a decrease in their capacity for Vi-hemagglutinin formation. The appearance of a definite degree of resistance ot S. typhimurium was observed in mice previously immunized with pertussis vaccine possessing pronounced toxic properties. Nevertheless, the appearance of enhanced resistance to infection was observed only in the animals previously immunized with a nontoxic preparation.  相似文献   

11.
The effect of recombinant murine interferon-gamma (rIFN-gamma) as single stimulus for the activation of antibacterial activity of macrophages was investigated on the basis of the rate of intracellular killing of Listeria monocytogenes and Salmonella typhimurium by normal and rIFN gamma-activated peritoneal macrophages of CBA and C57BL/10 mice, which differ in natural resistance to infection by these bacteria. Eighteen hours after i.p. injection of 10 to 1 X 10(4) U rIFN-gamma, resident and exudate peritoneal macrophages which had phagocytosed L. monocytogenes or S. typhimurium in vivo, killed both species in vitro just as efficiently as did resident macrophages of normal mice. Similar results were obtained after 18 hr of in vitro incubation of resident or exudate peritoneal macrophages with 0.1 to 1 X 10(4) U/ml rIFN-gamma. Consistent with the in vitro findings, two i.v. injections of 5 X 10(4) U rIFN-gamma did not affect the rate of in vivo proliferation of L. monocytogenes or S. typhimurium in the spleens of mice during the first 2 days after i.v. injection of the bacteria. Compared with the effect on the controls, two i.p. injections of 5 X 10(2) to 5 X 10(4) U rIFN-gamma did not decrease the numbers of viable S. typhimurium in either the peritoneal cell suspension or the spleen 24 hr after i.p. injection of the bacteria. Checking the state of activation of rIFN-gamma-activated macrophages on the basis of two commonly used criteria for macrophage activation showed that rIFN-gamma-activated macrophages inhibited the intracellular replication of Toxoplasma gondii and displayed enhanced O2 consumption and H2O2 release after stimulation with phorbol myristate acetate compared with macrophages from normal CBA and C57BL/10 mice. The present findings show that as single activating stimulus, rIFN-gamma is not capable of activating the antibacterial effector functions of peritoneal macrophages against facultative intracellular pathogens such as L. monocytogenes and S. typhimurium.  相似文献   

12.
To determine the underlining mechanism of the difference in innate susceptibility of mouse strains to infection by Salmonella typhimurium, the ingestion and in vitro intracellular killing of S. typhimurium by resident peritoneal macrophages of mouse strains that differ in natural resistance to this microorganism has been studied. The results revealed that the rate constants of in vitro phagocytosis (Kph) in the presence of inactivated rabbit immune serum did not differ between macrophages of susceptible C57BL/10 and resistant CBA mice (for both strains: Kph = 0.021 min-1). The rate constant of in vitro intracellular killing (Kk) was determined 1) after in vivo phagocytosis (CBA, Kk = 0.055 min-1; C57BL/10, Kk = 0.031 min-1), 2) after in vitro phagocytosis of preopsonized bacteria (CBA, Kk = 0.020 min-1; C57BL/10, Kk = 0.012 min-1), and 3) during continuous phagocytosis in vitro (CBA, Kk = 0.029 min-1; C57BL/10, Kk = 0.013 min-1). With all three approaches, the initial rate of intracellular killing by normal macrophages of Salmonella-resistant CBA mice amounted to about 1.7 times the value found for macrophages of susceptible C57BL/10 mice (p less than 0.01). This trait difference was independent of the previous way of ingestion of the bacteria, unaffected by the kind of opsonization, and specific for S. typhimurium, because Staphylococcus aureus and Listeria monocytogenes were killed by macrophages of these mouse strains with equal efficiency (p greater than 0.50). These findings indicate that a difference in genetic background expressed in the efficacy of intracellular killing by resident peritoneal macrophages immediately upon ingestion of S. typhimurium is relevant for the innate resistance of mice against S. typhimurium.  相似文献   

13.
Macrophages recognize, adhere to, and phagocytose Salmonella typhimurium. The major outer membrane protein OmpC is a candidate ligand for macrophage recognition. To confirm this we used transposon mutagenesis to develop an ompC-deficient mutant in a known virulent strain of S. typhimurium; mutant and wild type were compared in macrophage adherence and association assays. Radiolabeled wild type S. typhimurium bound to macrophages at five-fold higher levels than did the ompC mutant. In association assays, macrophages in monolayers bound and internalized three-fold more wild type than mutant, while macrophages in suspension bound and internalized 40-fold more wild type than mutant. The ompC gene of our test strain of S. typhimurium contains several discrete differences compared with the ompC genes of Salmonella typhi and Escherichia coli. The deduced OmpC amino acid sequence of S. typhimurium shares 77 and 98% identity with OmpC amino acid sequence of E. coli and S. typhi, respectively. Evidence from this study supports a role for the OmpC protein in initial recognition by macrophages and distinguishes regions of this protein that potentially participate in host-cell recognition of bacteria by phagocytic cells.  相似文献   

14.
The role of individual immunity factors in protection from S. typhimurium infection was studied on mice immunized orally in a single administration with an antigenic complex obtained by the treatment of bacterial cells with hydroxylamine. The oral administration of this preparation induced the systemic and local transformation of the organism, which was manifested by the accumulation of antibody-producing cells in the immunocompetent organs (spleen, mesenteric lymph nodes) and the increase of the phagocytic activity of macrophages in peritoneal fluid. Cellular immunity factors were found to be important for the development of resistance to salmonellosis caused by S. typhimurium after oral immunization with the antigenic complex.  相似文献   

15.
The bactericidal activity of mouse macrophages with different sensitivity to Salmonella infection has been studied. The sensitivity of BALB/c mice to S. typhimurium infection is associated with the low bactericidal activity of their macrophages. The introduction of interferon stimulates the bactericidal activity of macrophages sensitive to Salmonella infection of mice, which sharply enhances the resistance of the animals to this infection.  相似文献   

16.
Our study was performed to investigate whether macrophages become activated during an infection with Salmonella typhimurium and, if so, whether these activated macrophages kill S. typhimurium faster than resident macrophages. Mice received i.v. injections with a sublethal number of S. typhimurium; on about day 12 of the infection the numbers of bacteria in the liver and the spleen were maximal. During the infection, activation of peritoneal macrophages could be demonstrated on the basis of three criteria, i.e., the ability to inhibit the proliferation of Toxoplasma gondii, an enhanced production of H2O2 and an increased expression of Ia Ag. The rate of in vitro intracellular killing of S. typhimurium by these activated macrophages was not increased compared to that for resident macrophages. To determine the growth of S. typhimurium in activated mice a nalidixic acid-resistant mutant strain, called S. typhimurium 510R, was used. The net growth rates of the mutant S. typhimurium 510R in the spleen of S. typhimurium 510-activated and normal mice were similar. However, in the liver of S. typhimurium 510-activated mice the number of S. typhimurium 510R did not change during 3 to 48 h after injection. The role of specific antibodies during the initial phase of the infection was negligible, because only low levels of antibodies were detected during the first 15 days of infection and the growth rates of S. typhimurium 510 in the spleen and liver of mice with high titers of antibodies were not significantly different from the rates in normal mice. The results of this study demonstrate that although macrophages become activated during an infection with S. typhimurium, these cells do not display an enhanced bactericidal activity in vitro and in vivo no significant effect on the growth rate of S. typhimurium in the spleen and a bacteriostatic effect in the liver is found. Hence macrophage activation is probably not very important in the host defense against S. typhimurium.  相似文献   

17.
Ahmad N  Deeba F  Faisal SM  Khan A  Agrewala JN  Dwivedi V  Owais M 《Biochimie》2006,88(10):1391-1400
Earlier we have demonstrated that novel fusogenic liposomes made up of lipid from Escherichia coli (escheriosomes) have strong tendency to fuse with the plasma membrane of target cells and thereby delivering the entrapped contents into their cytosol. The delivery of entrapped antigen in cytosol of the target cells ensues its processing and presentation along with MHC class I pathway that eventually elicit antigen specific cytotoxic T cells. The result of the present study revealed that immunization of BALB/c mice with escheriosome-encapsulated Salmonella typhimurium (S. typhimurium) cytosolic antigens resulted in the augmentation of antigen specific cytotoxic T cell lymphocyte as well as IgG responses. In contrast, free or conventional liposome (PC liposome) encapsulated antigen failed to induce CD8+ CTLs in the immunized animals. Further, immunization with escheriosome-encapsulated antigen resulted in significant enhancement in the release of IFN-gamma and IgG2a in the experimental animals. Interestingly, the immunization with escheriosome-encapsulated antigen resulted in upregulation of CD80 and CD86 on the surface of antigen presenting cells (APCs) as well. Finally, the results of the present study reveal that immunization of animals with escheriosomes encapsulated antigen protected them against virulent S. typhimurium infection. This was evident by increased survival, and reduced bacterial burden in vital organs of the immunized animals. The data of the present study suggest that escheriosomes can emerge as an effective vehicle for intracellular delivery of antigen and thus hold promise in development of liposome based vaccine against Salmonella and other intracellular pathogens.  相似文献   

18.
Protective properties of Ra- and Re-chemotypes of S. minnesota were studied in experiments on active and passive protection of albino mice from infection with a virulent S. typhimurium culture. Vaccines prepared from the Ra- and Re-mutants of S. minnesota were administered to the animals in the sum total dose of from 0.05 to 0.6 mg. Hyperimmune and normal rabbit sera were administered in doses of 0.3 and 0.5 ml. S. mineesota Ra- and Re-mutants in the doses tested proved to possess a weak protective activity: the level of the immunized mice nonspecific protection from the experimental salmonellosis failed to exceed the natural resistance level. Immunogenicity of Ra-mutant was markedly greater than the immunogenicity of Re-mutant. A marked protective activity against the experimental salmonellosis in mice was possessed by the antigenic complexes from the homologous strain only.  相似文献   

19.
Abstract Phagosome-lysosome fusion in murine macrophages infected with S. typhimurium LT2 or S. typhi 1079 was investigated. Fusion of phagosome containing S. typhimurium LT2 with lysosome was markedly impaired, whereas S. typhi 1079 did not inhibit phagosome-lysosome fusion in murine macrophages. A similar inhibition of fusion was observed with LPS-deficient mutants of S. typhimurium LT2, suggesting that O-antigens do not contribute to the inhibition of fusion. Phagosome-lysosome fusion in macrophages after ingestion of UV-killed S. typhimurium LT2 was much greater than that of live bacteria. Furthermore, treatment of S. typhimurium LT2 with streptomycin, an inhibitor of bacterial protein synthesis, caused an increase in the extent of phagosome-lysosome fusion. Therefore protein synthesis in live bacteria is probably required for the inhibition of phagosome-lysosome fusion. These results suggest that phagosome-lysosome fusion in murine macrophages is impaired by some product(s) of viable S. typhimurium LT2.  相似文献   

20.
Phagosome-lysosome fusion in murine macrophages infected with S. typhimurium LT2 or S. typhi 1079 was investigated. Fusion of phagosome containing S. typhimurium LT2 with lysosome was markedly impaired, whereas S. typhi 1079 did not inhibit phagosome-lysosome fusion in murine macrophages. A similar inhibition of fusion was observed with LPS-deficient mutants of S. typhimurium LT2, suggesting that O-antigens do not contribute to the inhibition of fusion. Phagosome-lysosome fusion in macrophages after ingestion of UV-killed S. typhimurium LT2 was much greater than that of live bacteria. Furthermore, treatment of S. typhimurium LT2 with streptomycin, an inhibitor of bacterial protein synthesis, caused an increase in the extent of phagosome-lysosome fusion. Therefore protein synthesis in live bacteria is probably required for the inhibition of phagosome-lysosome fusion. These results suggest that phagosome-lysosome fusion in murine macrophages is impaired by some product(s) of viable S. typhimurium LT2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号