首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Photosynthetic capacity decreases rapidly when temperate species are exposed to heat stress during reproductive development. We investigated whether injury in wheat (Triticum aestivum L.) resulted from general acceleration of senescence processes or specific heat-induced lesions. In situ photosynthetic capacity of leaf discs and thylakoid reactions were measured using flag leaf tissue from two cultivars maintained at 20 and 35°C during maturation. Photosynthetic rates of leaf discs decreased faster at 35 than at 20°C and were more photolabile in cv Len than in cv Waverly at high temperature. Patterns of thylakoid breakdown also differed in the two wheat genotypes at 20°C: intersystem electron transport and photosystem II activity decreased linearly during postanthesis development in Len wheat, whereas coupling of photophosphorylation to electron transport declined late during senescence in Waverly wheat. Heat stress induced early loss of intersystem electron transport followed sequentially by decreased silicomolybdic acid, + 3-(3,4-dichlorophenyl)-1-dimethylurea-mediated photosystem II activity and 2,5-dichloro-p-benzoquinone-mediated photosystem II activity in Len. Stress accelerated the uncoupling process, but loss of intersystem electron transport and photosystem II activities was slower in Waverly than in Len. We conclude that high temperature initially accelerated thylakoid component breakdown, an effect similar to normal senescence patterns. Thylakoid breakdown may induce a destabilizing imbalance between component reaction rates; an imbalance between photosystem II and cytochrome f/b6-mediated activities would be particularly damaging during heat stress.  相似文献   

2.
Havaux M 《Plant physiology》1992,100(1):424-432
The in vivo photochemical activity of photosystem II was inferred from modulated chlorophyll fluorescence and photoacoustic measurements in intact leaves of several plant species (Lycopersicon esculentum Mill., Solanum tuberosum L., Solanum nigrum L.) exposed to various environmental stresses (drought, heat, strong light) applied separately or in combination. Photosystem II was shown to be highly drought-resistant: even a drastic desiccation in air of detached leaf samples only marginally affected the quantum yield for photochemistry in photosystem II. However, water stress markedly modified the responses of photosystem II to superimposed constraints. The stability of photosystem II to heat was observed to increase strongly in leaves exposed to water stress conditions: heat treatments (e.g. 42°C in the dark), which caused a complete and irreversible inhibition of photosystem II in well-watered (tomato) leaves, resulted in a small and fully reversible reduction of the photochemical efficiency of photosystem II in drought-stressed leaves. In vivo photoacoustic data indicated that photosystem I was highly resistant to both heat and water stresses. When leaves were illuminated with intense white light at 25°C, photoinhibition damage of photosystem II was more pronounced in water-stressed leaves than in undesiccated controls. However, in nondehydrated leaves, photoinhibition of photosystem II was strongly temperature dependent, being drastically stimulated at high temperatures above 38 to 40°C. As a consequence, when exposed to strong light at high temperature, photosystem II photochemistry was significantly less inhibited in dehydrated leaves than in control well-hydrated leaves. Our results demonstrate the existence of a marked antagonism between physicochemical stresses, with water stress enhancing the resistance of photosystem II to constraints (heat, strong light at high temperature) that are usually associated with drought in the field.  相似文献   

3.
The functionality of photosystem II (PS II) following high-light pre-treatment of leaf segments at a chilling temperature was monitored as F(v)/F(m), the ratio of variable to maximum chlorophyll fluorescence in the dark-adapted state and a measure of the optimal photochemical efficiency in PS II. Recovery of PS II functionality in low light (LL) and at a favourable temperature was retarded by (1) water stress and (2) growth in LL, in both spinach and Alocasia macrorrhiza L. In spinach leaf segments, water stress per se affected neither F(v)/F(m) nor the ability of the adenosine triphosphate (ATP) synthase to be activated by far-red light for ATP synthesis, but it induced chloroplast shrinkage as observed in frozen and fractured samples by scanning electron microscopy. A common feature of water stress and growth of plants in LL is the enhanced anchoring of PS II complexes, either across the shrunken lumen in water-stress conditions or across the partition gap in larger grana due to growth in LL. We suggest that such enhanced anchoring restricts the mobility of PS II complexes in the thylakoid membrane system, and hence hinders the lateral migration of photoinactivated PS II reaction centres to the stroma-located ribosomes for repair.  相似文献   

4.
The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (??w), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant.  相似文献   

5.
Leaf micromorphological traits and some physiological parameters with potential relevance to drought tolerance mechanisms were investigated in four selected winter wheat varieties. Plants were subjected to two cycles of drought treatment at anthesis. Yield components confirmed contrasting drought-sensitive and -tolerant behavior of the genotypes. Drought tolerance was associated with small flag leaf surfaces and less frequent occurrence of stomata. Substantial variation of leaf cuticular thickness was found among the cultivars. Thin cuticle coincided with drought sensitivity and correlated with a high rate of dark-adapted water loss from leaves. Unlike in Arabidopsis, thickening of the cuticular matrix in response to water deprivation did not occur. Water stress induced epicuticular wax crystal depositions preferentially on the abaxial leaf surfaces. According to microscopy and electrolyte leakage measurements from leaf tissues, membrane integrity was lost earlier or to a higher extent in sensitive than in tolerant genotypes. Cellular damage and a decline of relative water content of leaves in sensitive cultivars became distinctive during the second cycle of water deprivation. Our results indicate strong variation of traits with potential contribution to the complex phenotype of drought tolerance in wheat genotypes. The maintained membrane integrity and relative water content values during repeated water limited periods were found to correlate with drought tolerance in the selection of cultivars investigated.  相似文献   

6.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

7.
Osmotic adjustment in leaves of sorghum in response to water deficits   总被引:17,自引:12,他引:17       下载免费PDF全文
Jones MM 《Plant physiology》1978,61(1):122-126
The relationships among the total water potential, osmotic potential, turgor potential, and relative water content were determined for leaves of sorghum (Sorghum bicolor [L.] Moench cvs. `RS 610' and `Shallu') with three different histories of water stress. Plants were adequately watered (control), or the soil was allowed to dry slowly until the predawn leaf water potential reached either −0.4 megapascal (MPa) (treatment A) or −1.6 MPa (treatment B). Severe soil and plant water deficits developed sooner after cessation of watering in `Shallu' than in `RS 610', but no significant differences in osmotic adjustment or tissue water relations were observed between the two cultivars. In both cultivars, the stress treatments altered the relationship between leaf water potential and relative water content, resulting in the previously stressed plants maintaining higher tissue water contents than control plants at the same leaf water potential. The osmotic potential at full turgor in the control sorghum was −0.7 MPa: stress pretreatment significantly lowered the osmotic potential to −1.1 and −1.6 MPa in stress treatments A and B, respectively. As a result of this osmotic adjustment, leaf turgor potentials at a given value of leaf water potential exceeded those of the control plants by 0.15 to 0.30 MPa in treatment A and by 0.5 to 0.65 MPa in treatment B. However, zero turgor potential occurred at approximately the same value of relative water content (94%) irrespective of previous stress history. From the relationship between turgor potential and relative water content there was an approximate doubling of the volumetric elastic modulus, i.e. a halving of tissue elasticity, as a result of stress preconditioning. The influence of stress preconditioning on the moisture release curve is discussed.  相似文献   

8.
A field experiment was conducted with a water-stressed treatmentand well-watered control using eight maize (Zea mays L.) cultivars.Effects of water deficits on cell membrane stability (CMS) measuredby the polyethylene glycol (PEG) test, leaf surface wax content,and relative growth rate were investigated. Cytoplasmic lipidcontent was also analysed. Cell membrane stability and leaf surface wax content increasedwith the degrees of stress. Tolerance to drought evaluated asincrease in CMS under water deficit conditions was well differentiatedbetween cultivars and was well correlated with a reduction inrelative growth rate under stress. A negative correlation wasfound between percentage injury in the PEG test and leaf surfacewax content. High phospholipid contents were observed in tissuesof drought tolerant cultivars under water deficit conditions. Key words: Cell membrane stability, cytoplasmic lipid, drought tolerance, leaf surface wax, relative growth rate  相似文献   

9.
《Process Biochemistry》2007,42(4):710-714
Experiments were conducted in two Aloe vera cultivars (F0 and F50) to study the characters of physiology and ecology under salt stress. The results indicate decreases in tissue water, total soluble sugars and glucose, and increases in dry matter and membrane injury occurred both in F0 and F50 irrigated with 60% seawater. Less cell membrane injury were observed in F50. Moreover, total soluble sugars in F0 decreased obviously, however, no significant change in F50, while sucrose in plants had no significant change. Furthermore, F0 and F50 accumulated more inorganic cations in stems and roots. In addition, leaf K+ and Ca2+ contents were more in F50 than that in F0 to maintain normal plant growth though accumulation of Na+. F50 had a relative superiority in growth under salinity conditions due to higher K+/Na+ ratio and lower Na+/Ca2+ ratio than F0.  相似文献   

10.
The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants. The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20 °C at all durations tested), indicating that the detachment itself did not affect the fluorescence parameters. In contrast, heat induced reduction in the maximum photochemical efficiency of PSII of detached leaves occurred within 2 h at 40 °C and within 30 min at 45 °C, and the response was more pronounced than when intact plants were heat stressed for three days at 40 °C. The proportion of total variation that can be ascribed to the genetic differences among cultivars for a trait was estimated as genetic determination. During heat treatment, the genetic determination of most of the fluorescence parameters was lower in detached leaves than in intact plants. In addition, the correlation of the cultivar response in intact plants versus detached leaves was low (r = 0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment.  相似文献   

11.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l?1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.  相似文献   

12.
Salt stress responses of 23 asparagus bean cultivars were evaluated using 14-day-old seedlings after 15-day exposure to 75 mM NaCl in a hydroponics culture system. Salt-induced changes in plant growth and morphology, photosynthetic capacity, cell membrane integrity, and cellular protection enzyme systems as well as other physiological and biochemical traits were investigated to identify genotypic variability in salt response. This study also analyzed heredity parameters and correlation of the salt response index (SRI). Salt stress suppressed seedling growth and simultaneously reduced leaf area, content of chlorophyll and soluble proteins, net assimilation rate, as well as dry matter accumulation. In contrast, leaf blade cell membrane relative permeability, content of malondialdehyde, and antioxidant enzyme activity were elevated after salt treatment. Analysis of the heredity parameters has identified that the 18 investigated traits have different genotypic variance of the SRI values. Based on Ward's distances estimated for the sum of square variance in the SRI values, all the cultivars were classified into 2 discrete salt-tolerant and salt-sensitive clusters. Findings from this study will provide theoretical bases for identification and breeding of salt-tolerant cultivars in asparagus bean.  相似文献   

13.
As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.  相似文献   

14.
Photosynthesis, chlorophyll fluorescence, and leaf water parameters were measured in six Portuguese maize (Zea mays L.) cultivars during and following a period of drought stress. The leaf relative water content (RWC) responded differently among cultivars but except for cultivar PB369, recovered close to initial values after watering was restored. Photosynthetic rate and stomatal conductance decreased with drought but more slowly in cultivars PB269 and PB260 than in cultivars AD3R, PB64, PB304 and PB369. Water use efficiency (WUE) decreased during the water stress treatment although with cultivar PB260 the decrease was marked only when the RWC fell below 40%. Recovery of WUE was seen with all cultivars except PB369. The maximum quantum efficiency of photosystem II, the photochemical quenching coefficient, the electron transport rate in PSII and the estimated functional plastoquinone pool tended to decrease with drought, while the non-photochemical quenching coefficient increased. The parameters estimated from chlorophyll fluorescence did not recover in PB369, during re-watering. The results show that PB260 and PB269 were the most tolerant and PB369 was the least tolerant cultivars to water stress. The variation found among the cultivars tested suggests the existence of valuable genetic resources for crop improvement in relation to drought tolerance.  相似文献   

15.
Nine red maple cultivars originating in different USDA hardiness zones were grown in containers in 1995 and 1996 prior to laboratory procedures to determine root cell membrane thermostability.Electrolyte leakage from excised root tissue exposed for 30 min to temperatures ranging from 20 to 63°C, was used to assess cellular injury of unsuberized, current season, fine roots.Electrolyte leakage was an effective means for measuring cell membrane thermostability in root tissue. The critical killing temperatures of root tissue of cultivars evaluated ranged from 52.0±0.8°C to 53.3±0.5°C, indicating minimal differences in root membrane thermostability.Critical temperatures for cultivars selected from the northern part of the native range did not differ from cultivars originating elsewhere.  相似文献   

16.
Nitric oxide (NO) is a plant signaling compound known to mitigate key physiological processes and salicylic acid (SA) is considered to be a signaling molecule that plays a key role in growth, development, and defense responses in plants under stress conditions. This work investigated the effects of sodium nitroprusside (SNP, a donor of NO) and SA on salt-tolerance of cotton (Gossypium hirsutum L.) seedlings by examining growth, photosynthetic performance, total osmoregulation substance content, antioxidative enzymes and H+-ATPase enzyme subjected to 100 mM NaCl. Addition of 100 mM NaCl inhibited the growth and photosynthetic parameters of cotton seedlings, and dramatically increased the electrolyte leakage, the plant contents of proline, lipid peroxidation (malondialdehyde), hydrogen peroxide (H2O2) and Na. Furthermore, antioxidant enzyme activities were restrained. Foliar applications of 0.1 mM SNP or/and 0.1 mM SA led to increase in the growth rate and photosynthesis, including photosystem II, net photosynthetic rate and transpiration rate, improvement of reactive oxygen species-scavenging enzymes activities and reduction of H2O2 accumulation in cotton seedlings induced by NaCl. In addition, membrane transport and function were facilitated by decreasing leaf electrolyte leakage, improving ion absorption and activating the osmotic-regulated substances metabolic. Further investigation also showed that SNP and SA alleviated the inhibition of H+-ATPase in plasma membrane induced by NaCl. The present study showed that foliar application of SNP and SA alone mitigated the adverse effect of salinity, while the combined application proved to be even more effective in alleviating the adverse effects of NaCl stress.  相似文献   

17.
18.
Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment.  相似文献   

19.
以一年生沙枣幼苗为材料,研究了外源脱落酸和外源硅在干旱(T2:SRWC=35%~40%,处理时间30 d)胁迫下沙枣幼苗叶片相对含水量、叶片水势、质膜相对透性、丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的影响。结果表明:沙枣幼苗T2干旱处理时,与对照(ck)相比其叶片相对含水量和水势均极显著降低,质膜相对透性有所增大,沙枣幼苗被受到了一定程度的伤害。同时,向T2干旱处理的幼苗使用外源脱落酸(ABA)后,可以极显著提高其叶片相对含水量和过氧化氢酶活性,极显著降低叶片质膜相对透性和丙二醛含量,叶片水势也有所降低,这说明使用外源脱落酸能够减轻干旱胁迫对沙枣幼苗的伤害。同时,向T2干旱处理的幼苗使用外源硅(Si)时,与未使用外源硅的T2相比其叶片相对含水量和超氧化物歧化酶(SOD)活性极显著上升,叶片水势也有下降趋势,这说明使用外源硅在一定程度上能够缓解干旱胁迫对沙枣幼苗的伤害。  相似文献   

20.
The article discusses an improvement of a previously developed method for assessment of ion leakage from plant tissues as a gauge of membrane and cell wall performance under stressful environment. It employs conductometric measurements of the ion efflux from leaves and their quantitative interpretation by a theoretical model based on the laws of diffusion. Experimental data are readily fit with the model and results are in accordance with relative water content of dehydrated barley (Hordeum vulgare) seedlings of two distinct cultivars. Some new parameters obtained from fitting are proposed as reliable indicators of the leaf status. They appear to be helpful in further distinguishing the behavior of two separate cellular structures with respect to their electrolyte permeability. It is concluded that the established method based on the kinetics of ion leakage is adequate for evaluation of contrasting genotypes under normal and stress conditions. Furthermore, it could be used as a simple and powerful tool for routine analysis and screening for drought tolerance in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号