首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in "open" (polymerase bound to gapped DNA) and "closed" (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an "induced-fit" mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate--leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer--in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension.  相似文献   

2.
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β. Pre-steady-state kinetic studies have shown that the Pol λ-DNA complex binds both correct and incorrect nucleotides 130-fold tighter, on average, than the DNA polymerase β-DNA complex, although the base substitution fidelity of both polymerases is 10− 4 to 10− 5. To better understand Pol λ's tight nucleotide binding affinity, we created single-substitution and double-substitution mutants of Pol λ to disrupt the interactions between active-site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active-site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding to each of the common structural moieties in the following order: triphosphate ? base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and the template base led to a moderate increase in Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template.  相似文献   

3.
DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain.  相似文献   

4.
dUTPase (deoxyuridine 5'-triphosphate nucleotide hydrolase) is an enzyme responsible for maintaining low levels of intracellular dUTP and thus prevents uracil incorporation into DNA by DNA polymerases during replication and repair processes. The thermodynamics of binding for both dUTP and dUMP (deoxyuridine 5'-monophosphate) to the D80A mutant form of Trypanosoma cruzi dUTPase have been investigated by fluorescence spectroscopy and high-sensitivity isothermal titration calorimetry. In the presence of magnesium, approximately a 30-fold decrease in the value of the k(cat) and a 15-fold increase in the K(m) for dUTP hydrolysis was calculated while a 5-fold decrease was observed in the affinity for dUMP. In the absence of magnesium, the affinity for dUTP binding was similar for both enzymes while that for dUMP was lowered 3-fold as a consequence of the mutation. Calorimetric titrations in several buffers with different ionization heats rendered similar proton exchanges during the binding of dUMP. Thus, apparently the side chain of Asp 80 does not seem to vary its protonation state during the binding process. The enthalpy change values for the D80A mutant hardly change with temperature and, in addition, were Mg(2+) independent. We conclude that the D80A mutation induces only a slight conformational change in the active site yet results in a significant alteration of nucleotide binding and modifies the ability of the enzyme to discriminate between dUTP and dUMP when magnesium is present.  相似文献   

5.
The nature of conformational transitions in DNA polymerase lambda (pol lambda), a low-fidelity DNA repair enzyme in the X-family that fills short nucleotide gaps, is investigated. Specifically, to determine whether pol lambda has an induced-fit mechanism and open-to-closed transition before chemistry, we analyze a series of molecular dynamics simulations from both the binary and ternary states before chemistry, with and without the incoming nucleotide, with and without the catalytic Mg(2+) ion in the active site, and with alterations in active site residues Ile(492) and Arg(517). Though flips occurred for several side-chain residues (Ile(492), Tyr(505), Phe(506)) in the active site toward the binary (inactive) conformation and partial DNA motion toward the binary position occurred without the incoming nucleotide, large-scale subdomain motions were not observed in any trajectory from the ternary complex regardless of the presence of the catalytic ion. Simulations from the binary state with incoming nucleotide exhibit more thumb subdomain motion, particularly in the loop containing beta-strand 8 in the thumb, but closing occurred only in the Ile(492)Ala mutant trajectory started from the binary state with incoming nucleotide and both ions. Further connections between active site residues and the DNA position are also revealed through our Ile(492)Ala and Arg(517)Ala mutant studies. Our combined studies suggest that while pol lambda does not demonstrate large-scale subdomain movements as DNA polymerase beta (pol beta), significant DNA motion exists, and there are sequential subtle side chain and other motions-associated with Arg(514), Arg(517), Ile(492), Phe(506), Tyr(505), the DNA, and again Arg(514) and Arg(517)-all coupled to active site divalent ions and the DNA motion. Collectively, these motions transform pol lambda to the chemistry-competent state. Significantly, analogs of these residues in pol beta (Lys(280), Arg(283), Arg(258), Phe(272), and Tyr(271), respectively) have demonstrated roles in determining enzyme efficiency and fidelity. As proposed for pol beta, motions of these residues may serve as gate-keepers by controlling the evolution of the reaction pathway before the chemical reaction.  相似文献   

6.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

7.
During turnover, the catalytic tyrosine residue (Tyr10) of the sigma class Schistosoma haematobium wild-type glutathione-S-transferase is expected to switch alternately in and out of the reduced glutathione-binding site (G-site). The Tyrout10 conformer forms a pi-cation interaction with the guanidinium group of Arg21. As in other similar glutathione-S-transferases, the catalytic Tyr has a low pKa of 7.2. In order to investigate the catalytic role of Tyr10, and the structural and functional roles of Arg21, we carried out structural studies on two Arg21 mutants (R21L and R21Q) and a Tyr10 mutant, Y10F. Our crystallographic data for the two Arg21 mutants indicate that only the Tyrout10 conformation is populated, thereby excluding a role of Arg21 in the stabilisation of the out conformation. However, Arg21 was confirmed to be catalytically important and essential for the low pKa of Tyr10. Upon comparison with structural data generated for reduced glutathione-bound and inhibitor-bound wild-type enzymes, it was observed that the orientations of Tyr10 and Arg35 are concerted and that, upon ligand binding, minor rearrangements occur within conserved residues in the active site loop. These rearrangements are coupled to quaternary rigid-body movements at the dimer interface and alterations in the localisation and structural order of the C-terminal domain.  相似文献   

8.
The mitotic kinesin Eg5 plays an essential role in establishing the bipolar spindle. Recently, several antimitotic inhibitors have been shown to share a common binding region on Eg5. Considering the importance of Eg5 as a potential drug target for cancer chemotherapy it is essential to understand the molecular mechanism, by which these agents block Eg5 activity, and to determine the "key residues" crucial for inhibition. Eleven residues in the inhibitor binding pocket were mutated and the effects were monitored by kinetic analysis and mass spectrometry. Mutants R119A, D130A, P131A, I136A, V210A, Y211A and L214A abolish the inhibitory effect of monastrol. Results for W127A and R221A are less striking, but inhibitor constants are still considerably modified compared to wild-type Eg5. Only one residue, Leu214, was found to be essential for inhibition by STLC. W127A, D130A, V210A lead to increased K(i)(app) values, but binding of STLC is still tight. R119A, P131A, Y211A and R221A convert STLC into a classical rather than a tight-binding inhibitor with increased inhibitor constants. These results demonstrate that monastrol and STLC interact with different amino acids within the same binding region, suggesting that this site is highly flexible to accommodate different types of inhibitors. The drug specificity is due to multiple interactions not only with loop L5, but also with residues located in helices alpha2 and alpha3. These results suggest that tumour cells might develop resistance to Eg5 inhibitors, by expressing Eg5 point mutants that retain the enzyme activity, but prevent inhibition, a feature that is observed for certain tubulin inhibitors.  相似文献   

9.
The insecticidal activity of Bacillus thuringiensis (Bt) Cry toxins involves toxin stabilization, oligomerization, passage across the peritrophic membrane (PM), binding to midgut receptors and pore-formation. The residues Arg-158 and Tyr-170 have been shown to be crucial for the toxicity of Bt Cry4Ba. We characterized the biological function of these residues. In mosquito larvae, the mutants R158A/E/Q (R158) could hardly penetrate the PM due to a significantly reduced ability to alter PM permeability; the mutant Y170A, however, could pass through the PM, but degraded in the space between the PM and the midgut epithelium. Further characterization by oligomerization demonstrated that Arg-158 mutants failed to form correctly sized high-molecular weight oligomers. This is the first report that Arg-158 plays a role in the formation of Cry4Ba oligomers, which are essential for toxin passage across the PM. Tyr-170, meanwhile, is involved in toxin stabilization in the toxic mechanism of Cry4Ba in mosquito larvae. [BMB Reports 2014; 47(10): 546-551]  相似文献   

10.
Ternary complexes of wild type or mutant form of human DNA polymerase beta (pol beta) bound to DNA and dCTP substrates were studied by molecular dynamics (MD) simulations. The occurrences of contact configurations (CC) of structurally important atom pairs were sampled along the MD trajectories, and converted into free-energy differences, DeltaG(CC). DeltaG(CC) values were correlated with the experimental binding and catalytic free energies for the wild type pol beta and its Arg183Ala, Tyr271Ala, Asp276Val, Lys280Gly, Arg283Ala, and Glu295Ala mutants. The correlation coefficients show that the strength of the H-bond between dCTP and Asn279 is a strong predictor of the mutation-induced changes in the catalytic efficiency of pol beta. This finding is consistent with the view that enzyme preorganization plays a major role in controlling DNA polymerase specific activity.  相似文献   

11.
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.  相似文献   

12.
13.
Retroviruses favor target-DNA (tDNA) distortion and particular bases at sites of integration, but the mechanism underlying HIV-1 selectivity is unknown. Crystal structures revealed a network of prototype foamy virus (PFV) integrase residues that distort tDNA: Ala188 and Arg329 interact with tDNA bases, while Arg362 contacts the phosphodiester backbone. HIV-1 integrase residues Ser119, Arg231, and Lys258 were identified here as analogs of PFV integrase residues Ala188, Arg329 and Arg362, respectively. Thirteen integrase mutations were analyzed for effects on integrase activity in vitro and during virus infection, yielding a total of 1610 unique HIV-1 integration sites. Purine (R)/pyrimidine (Y) dinucleotide sequence analysis revealed HIV-1 prefers the tDNA signature (0)RYXRY(4), which accordingly favors overlapping flexible dinucleotides at the center of the integration site. Consistent with roles for Arg231 and Lys258 in sequence specific and non-specific binding, respectively, the R231E mutation altered integration site nucleotide preferences while K258E had no effect. S119A and S119T integrase mutations significantly altered base preferences at positions −3 and 7 from the site of viral DNA joining. The S119A preference moreover mimicked wild-type PFV selectivity at these positions. We conclude that HIV-1 IN residue Ser119 and PFV IN residue Ala188 contact analogous tDNA bases to effect virus integration.  相似文献   

14.
15.
Alpha-1,3 galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to beta-linked galactosides with retention of its alpha configuration. Although several complexes of alpha3GT with inhibitors and substrates have been reported, no structure has been determined of a complex containing intact UDP-galactose. We describe the structure of a complex containing an inhibitory analogue of UDP-galactose, UDP-2F-galactose, in a complex with the Arg365Lys mutant of alpha3GT. The inhibitor is bound in a distorted, bent configuration and comparison with the structure of the apo form of this mutant shows that the interaction induces structural changes in the enzyme, implying a role for ground state destabilization in catalysis. In addition to a general reduction in flexibility in the enzyme indicated by a large reduction in crystallographic B-factors, two loops, one centred around Trp195 and one encompassing the C-terminal 11 residues undergo large structural changes in complexes with UDP and UDP derivatives. The distorted configuration of the bound UDP-2F-galactose in its complex is stabilized, in part, by interactions with residues that are part of or near the flexible loops. Mutagenesis and truncation studies indicate that two highly conserved basic amino acid residues in the C-terminal region, Lys359 and Arg365 are important for catalysis, probably reflecting their roles in these ligand-mediated conformational changes. A second Mn(2+) cofactor has been identified in the catalytic site of a complex of the Arg365Lys with UDP, in a location that suggests it could play a role in facilitating UDP release, consistent with kinetic studies that show alpha3GT activity depends on the binding of two manganese ions. Conformational changes in the C-terminal 11 residues require an initial reorganization of the Trp195 loop and are linked to enzyme progress through the catalytic cycle, including donor substrate distortion, cleavage of the UDP-galactose bond, galactose transfer, and UDP release.  相似文献   

16.
17.
2′-Deoxycytidylate deaminase [or deoxycytidine-5′-monophosphate (dCMP) deaminase, dCD] catalyzes the deamination of dCMP to deoxyuridine-5′-monophosphate to provide the main nucleotide substrate for thymidylate synthase, which is important in DNA synthesis. The activity of this homohexameric enzyme is allosterically regulated by deoxycytidine-5′-triphosphate (dCTP) as an activator and by deoxythymidine-5′-triphosphate as an inhibitor. In this article, we report the crystal structures of dCMP deaminase from Streptococcus mutans and its complex with dCTP and an intermediate analog at resolutions of 3.0 and 1.66 Å. The protein forms a hexamer composed of subunits adopting a three-layer α/β/α sandwich fold. The positive allosteric regulator dCTP mainly binds at the interface between two monomers in a molar ratio of 1:1 and rearranges the neighboring interaction networks. Structural comparisons and sequence alignments revealed that dCMP deaminase from Streptococcus mutans belongs to the cytidine deaminase superfamily, wherein the proteins exhibit a similar catalytic mechanism. In addition to the two conserved motifs involved in the binding of Zn2 +, a new conserved motif, (G43YNG46), related to the binding of dCTP was also identified. N-terminal Arg4, a key residue located between two monomers, binds strongly to the γ phosphate group of dCTP. The regulation signal was transmitted by Arg4 from the allosteric site to the active site via modifications in the interactions at the interface where the substrate-binding pocket was involved and the relocations of Arg26, His65, Tyr120, and Arg121 to envelope the active site in order to stabilize substrate binding in the complex. Based on the enzyme-regulator complex structure observed in this study, we propose an allosteric mechanism for dCD regulation.  相似文献   

18.
The large-scale opening motion of mammalian DNA polymerase beta is followed at atomic resolution by dynamic simulations that link crystal "closed" and "open" conformations. The closing/opening conformational change is thought to be key to the ability of polymerases to choose a correct nucleotide (through "induced fit") and hence maintain DNA repair synthesis fidelity. Corroborating available structural and kinetic measurements, our studies bridge static microscopic crystal structures with macroscopic kinetic data by delineating a specific sequence, Phe272 ring flip, large thumb movement, Arg258 rotation with release of catalytic Mg2+, together with estimated time-scales, that suggest the Arg258 rearrangement as a limiting factor of large subdomain motions. If similarly slow in the closing motion, this conformational change might be restricted further when an incorrect nucleotide binds and thus play a role in pol beta's selectivity for the correct nucleotide. These results suggest new lines of experimentation in the study of polymerase mechanisms (e.g. enzyme mutants), which should provide further insights into mechanisms of error discrimination and DNA synthesis fidelity.  相似文献   

19.
Flap endonucleases (FENs) catalyse the exonucleolytic hydrolysis of blunt-ended duplex DNA substrates and the endonucleolytic cleavage of 5'-bifurcated nucleic acids at the junction formed between single and double-stranded DNA. The specificity and catalytic parameters of FENs derived from T5 bacteriophage and Archaeoglobus fulgidus were studied with a range of single oligonucleotide DNA substrates. These substrates contained one or more hairpin turns and mimic duplex, 5'-overhanging duplex, pseudo-Y, nicked DNA, and flap structures. The FEN-catalysed reaction properties of nicked DNA and flap structures possessing an extrahelical 3'-nucleotide (nt) were also characterised. The phage enzyme produced multiple reaction products of differing length with all the substrates tested, except when the length of duplex DNA downstream of the reaction site was truncated. Only larger DNAs containing two duplex regions are effective substrates for the archaeal enzyme and undergo reaction at multiple sites when they lack a 3'-extrahelical nucleotide. However, a single product corresponding to reaction 1 nt into the double-stranded region occurred with A. fulgidus FEN when substrates possessed a 3'-extrahelical nt. Steady-state and pre-steady-state catalytic parameters reveal that the phage enzyme is rate-limited by product release with all the substrates tested. Single-turnover maximal rates of reaction are similar with most substrates. In contrast, turnover numbers for T5FEN decrease as the size of the DNA substrate is increased. Comparison of the catalytic parameters of the A. fulgidus FEN employing flap and double-flap substrates indicates that binding interactions with the 3'-extrahelical nucleotide stabilise the ground state FEN-DNA interaction, leading to stimulation of comparative reactions at DNA concentrations below saturation with the single flap substrate. Maximal multiple turnover rates of the archaeal enzyme with flap and double flap substrates are similar. A model is proposed to account for the varying specificities of the two enzymes with regard to cleavage patterns and substrate preferences.  相似文献   

20.
To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the K(d) of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The k(cat) of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, k(cat) on double-stranded DNA substrate was reduced 4-12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号