首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary. Three new full-length cDNAs coding for porcine somatotropin (PST) have been cloned. The sequence data indicate a high degree of polymorphism in the PST sequence. All six known PST sequences are different.  相似文献   

2.

Background

The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130).

Methodology/Principal Findings

We obtained nearly 80 million high quality paired-end reads (>50x coverage) that were assembled into 29,178 contigs (64.8 Mb), which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG) genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase.

Conclusions/Significance

The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for rapid and efficient access to genomic sequence in non-model organisms.  相似文献   

3.
Comparative proteome profiling using stable isotope peptide labelling and mass spectrometry has emerged as a promising strategy. Here, we show the broad potential of our proprietary protein sequence tag (PST) technology. A special feature of PST is its ability to detect a wide variety of proteins including the pharmaceutically relevant membrane and nuclear proteins. This procedure addresses a similar number of proteins, compared to the multidimensional protein identification technology approach, but offers additionally a quantitative analysis with its recently developed quantitative PST version.  相似文献   

4.
Purified staphylococcal toxoid (PST) has been shown to be an antigen-nonspecific immunomodulator, capable of inducing changes in the immune response of B-cells to unrelated antigens, such as sheep red blood cells (SRBC), in a wide range of doses (from 15 to 0.15 binding units per mouse). The manifestation of the immunomodulating effect depends on the conditions of the experiment: the doses of PST and SRBC, the age of mice, the sequence of the injections of the antigens and the intervals between the injections. The simultaneous injection of PST and SRBC induces, as a rule, an increase in immune response to the test antigen, while their separate injection induces mainly immunosuppression.  相似文献   

5.
Optimization of the synthesis of porcine somatotropin in Escherichia coli   总被引:1,自引:0,他引:1  
We report on the influence of choice of promoter and RNA polymerase, 5-untranslated regions and ribosome binding sites, codon usage, leader peptide coding sequences and poly A tail in the 3-untranslated region on the synthesis of porcine somatotropin (PST) in Escherichia coli. A total of 12 different constructs were tested in this study for the production of porcine somatotropin (PST) in E. coli. Several factors have significant effects on PST synthesis. In the presence of a strong promoter and a strong ribosome binding site, the next most important factor seems to be the combination of sequences at the 5-end of the mRNA including both the 5-untranslated region and the start of the coding sequence. Codon usage in the 5-coding sequence per se is not important in determining the level of PST synthesis where high level expression is achieved from a strong ribosome binding site. However, where low level synthesis of recombinant PST (rPST) is achieved, codon usage in the 5-coding sequence is important in determining the level of PST synthesis. Leader sequences dramatically reduce the level of PST synthesis. The presence of a poly A tail in the 3-untranslated region has no significant effect on PST synthesis.  相似文献   

6.
Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), remains a serious global health concern. Since their emergence in the mid-1970s multi-drug resistant (MDR) S. Typhi now dominate drug sensitive equivalents in many regions. MDR in S. Typhi is almost exclusively conferred by self-transmissible IncHI1 plasmids carrying a suite of antimicrobial resistance genes. We identified over 300 single nucleotide polymorphisms (SNPs) within conserved regions of the IncHI1 plasmid, and genotyped both plasmid and chromosomal SNPs in over 450 S. Typhi dating back to 1958. Prior to 1995, a variety of IncHI1 plasmid types were detected in distinct S. Typhi haplotypes. Highly similar plasmids were detected in co-circulating S. Typhi haplotypes, indicative of plasmid transfer. In contrast, from 1995 onwards, 98% of MDR S. Typhi were plasmid sequence type 6 (PST6) and S. Typhi haplotype H58, indicating recent global spread of a dominant MDR clone. To investigate whether PST6 conferred a selective advantage compared to other IncHI1 plasmids, we used a phenotyping array to compare the impact of IncHI1 PST6 and PST1 plasmids in a common S. Typhi host. The PST6 plasmid conferred the ability to grow in high salt medium (4.7% NaCl), which we demonstrate is due to the presence in PST6 of the Tn6062 transposon encoding BetU.  相似文献   

7.
About 25% of open reading frames in fully sequenced genomes are estimated to encode transmembrane proteins that represent valuable targets for drugs. However, the global analysis of membrane proteins has been proven to be problematic, e.g., because of their very amphiphilic nature. In this paper, we show that the recently published Protein Sequence Tag (PST) technology combined with an efficient sample preparation is a powerful method to perform protein analysis of highly enriched membrane fractions. The PST approach is a gel-free proteomics tool for the analysis of proteins, which relies on a "sampling" strategy by isolating N-terminal protein sequence tags from cyanogen bromide cleaved proteins. The identification of these N-terminal PST peptides is based on LC-MS/MS. The effectiveness of the technology is demonstrated for a membrane fraction, which was isolated from crude mitochondria of yeast after alkaline sodium carbonate treatment. The PST approach performed on this fraction analyzed 148 proteins, whereas 84% are identified as membrane proteins. More interestingly, among these membrane proteins 56% are predicted to be of low abundance. These encouraging results are an important step toward the development of a quantitative PST approach (qPST) for the differential display of membrane protein analysis.  相似文献   

8.
Pancreastatin (PST) (1-49) was first isolated from the porcine pancreas and can inhibit glucose-induced insulin release. PST (33-49), a PST C-terminal fragment, can also inhibit insulin release. The purpose of this study was to determine the shortest C-terminal biologically active fragment of PST, in terms of inhibition of insulin release from the isolated perfused rat pancreas. Porcine PST (1-49) and C-terminal fragments, PST (33-49), PST (35-49), PST (37-49) and PST (39-49) were synthesized by solid-phase methodology. PST (1-49), PST (33-49) and PST (35-49), at 10 nM, significantly (p less than 0.05) inhibited insulin release from isolated perfused rat pancreas: the first phase was inhibited by 15.6 +/- 2.4, 24.4 +/- 6.5 and 12.5 +/- 1.9% and the second phase, 18.9 +/- 2.7, 25.7 +/- 4.8 and 20.1 +/- 1.9% by PST (1-49), PST (33-49) and PST (35-49), respectively. PST (35-49) shows a dose-dependent inhibition of insulin release. PST (37-49) and PST (39-49) were, however, inactive. Our results indicate that the shortest C-terminal biologically active fragment is PST (35-49). These data further indicate that the C-terminal portion of PST is primarily responsible for the biological activity of PST.  相似文献   

9.
Hsiao YS  Yang YS 《Biochemistry》2002,41(43):12959-12966
Sulfotransferases (STs) catalyze all the known biological sulfonations, in which a sulfuryl group from a common sulfonate donor such as 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is transferred to a nucleophilic acceptor. In addition to PAPS, phenol sulfotransferase (PST), a member of the ST family, utilizes other nucleotides as substrates with much less catalytic efficiency [Lin, E. S., and Yang, Y. S. (2000) Biochem. Biophys. Res. Commun. 271, 818-822]. Six amino acid residues of PST have been chosen for mutagenesis studies on the basis of a model of PST and its sequence alignment with those of available cytosolic and membrane-anchored STs. Systematic analyses of the mutants reveal that Ser134 is important for the regulation of nucleotide specificity between 3'-phosphoadenosine 5'-phosphate (PAP) and adenosine 5'-monophosphate (AMP). Kinetic studies also indicate that Ser134 plays a key role in nucleotide binding (K(m)) but not in catalysis (kcat). Consequently, the catalytic efficiency (kcat/K(m)) of PST can be altered by 5 orders of magnitude with a mutation of Ser134. Moreover, the change in nucleotide specificity from PAP to AMP can be achieved by mutation of Ser134 to any of the following residues: Glu, Gln, Arg, and His. Roles of Lys44, Arg126, and Arg253, which interact directly with the 5'- and 3'-phosphate of PAP, were also investigated by mutagenesis and kinetic experiments. On the basis of these findings, we suggest that Ser134 is the key residue that enables PST to discriminate PAP from AMP.  相似文献   

10.
Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca2+ levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.  相似文献   

11.
Pancreastatin (PST) is known as the peptide which inhibits first phase of glucose-stimulated insulin secretion. Fasting plasma PST levels and responses of PST after oral glucose ingestion in patients with non-insulin-dependent diabetes mellitus (NIDDM) were studied with human PST-specific radioimmunoassay. Fasting plasma PST in NIDDM patients was not different from healthy controls, although a slightly higher level of PST was observed in patients treated with sulfonylurea among NIDDM patients. No significant increase in plasma PST was observed after a glucose ingestion in healthy controls. In contrast, plasma PST levels in NIDDM patients rose significantly after glucose ingestion. These results suggest a possible pathophysiological role for PST in NIDDM.  相似文献   

12.
Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f.sp. tritici (PST), is a major disease of wheat in temperate‐cold climates. The identification of new markers would ease the procedure for evaluating the ongoing pathogen evolution. Twelve single pustule isolates were generated from samples of PST obtained in UK during 1987–2001. They were evaluated for their pathogenic behaviour on a set of differential cultivars and were analysed by sequence‐related amplified polymorphisms (SRAP) technique, to identify polymorphisms useful to evaluate variability among isolates. This is the first report of the application of SRAP technique to Uredinales order.  相似文献   

13.
Polysialyltransferase-1 (PST; ST8Sia IV) is one of the alpha2, 8-polysialyltransferases responsible for the polysialylation of the neural cell adhesion molecule (NCAM). The presence of polysialic acid on NCAM has been shown to modulate cell-cell and cell-matrix interactions. We previously reported that the PST enzyme itself is modified by alpha2,8-linked polysialic acid chains in vivo. To understand the role of autopolysialylation in PST enzymatic activity, we employed a mutagenesis approach. We found that PST is modified by five Asn-linked oligosaccharides and that the vast majority of the polysialic acid is found on the oligosaccharide modifying Asn-74. In addition, the presence of the oligosaccharide on Asn-119 appeared to be required for folding of PST into an active enzyme. Co-expression of the PST Asn mutants with NCAM demonstrated that autopolysialylation is not required for PST polysialyltransferase activity. Notably, catalytically active, non-autopolysialylated PST does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Immunoblot analyses of NCAM polysialylation by polysialylated and non-autopolysialylated PST suggests that the NCAM is polysialylated to a higher degree by autopolysialylated PST. We conclude that autopolysialylation of PST is not required for, but does enhance, NCAM polysialylation.  相似文献   

14.
Human Phenol Sulfotransferase: Correlation of Brain and Platelet Activities   总被引:3,自引:0,他引:3  
Phenol sulfotransferase (PST; EC 2.8.2.1) catalyzes the sulfate conjugation of phenolic and catechol neurotransmitters and drugs. The human blood platelet has been the most thoroughly studied source of PST because of the possibility that the regulation of the enzyme in this easily accessible tissue might reflect the regulation of PST in the CNS. The human brain and platelet contain at least two forms of PST, forms designated as thermostable (TS) and thermolabile (TL) PST. TS PST catalyzes the sulfate conjugation of micromolar concentrations of phenol and p-nitrophenol and TL PST catalyzes the sulfate conjugation of dopamine and other monoamines. This study was performed to determine whether individual variations in the activities of human platelet TS and TL PST reflect individual variations in cerebral cortical PST activities. PST activities were measured in platelets and in cerebral cortical tissue obtained from 15 patients with epilepsy during clinically indicated neurosurgery. There was a highly significant correlation between the activities of the TS form of PST in cerebral cortex and platelets of these patients (r = 0.940, p less than 0.001), but there was not a significant correlation between activities of the TL form of PST in the two tissues (r = 0.396, p greater than 0.14). In addition to variations in the level of enzyme activity, there are also wide individual variations in the thermal stability of platelet TS PST.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pancreastatin (PST), a chromogranin A derived peptide with an array of effects in different tissues, has a role as a counterregulatory hormone of insulin action in hepatocytes and adipocytes, regulating glucose, lipid and protein metabolism. We have previously characterized PST receptors and signaling in rat hepatocytes, in which PST functions as a calcium-mobilizing hormone. In the present work we have studied PST receptors as well as the signal transduction pathways generated upon PST binding in adipocyte membranes. First, we have characterized PST receptors using radiolabeled PST as a ligand. Analysis of binding data indicated the existence of one class of binding sites, with a B(max) of 5 fmol/mg of protein and a K(d) of 1 nM. In addition, we have studied the G protein system that couples the PST receptor by gamma-(35)S-GTP binding studies. We have found that two G protein systems are involved, pertussis toxin-sensitive and -insensitive respectively. Specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Galpha(q/11) and to a lesser extent Galpha(i1,2) are activated by PST in rat adipocyte membranes. On the other hand, adenylate cyclase activity was not affected by PST. Finally, we have studied the specific phospholipase C isoform that is activated in response to PST. We have found that PST receptor is coupled to PLC-beta(3) via Galpha(q/11) activation in adipocyte membranes.  相似文献   

16.
Phenol sulfotransferase inheritance   总被引:1,自引:0,他引:1  
1. Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic and catechol neurotransmitters. Human tissues contain both thermostable (TS) and thermolabile (TL) forms of PST that differ in their substrate specificities, inhibitor sensitivities, physical properties, and regulation. 2. Individual variations in the levels of activity of both TS and TL PST in the human platelet are strongly influenced by inheritance. 3. Individual differences in the level of platelet TS PST activity are correlated with individual variations in the activity of this form of the enzyme in human cerebral cortex, liver, and intestinal mucosa. 4. There are also individual familial differences in the thermal stability of TS PST in the platelet. These differences are correlated with individual variations in the thermal stability of TS PST in cerebral cortex, liver, and intestinal mucosa. 5. Individual variations in the thermal stability of TS PST in hepatic tissue are associated with the presence of one or both of a pair of TS PST isozymes that can be separated by ion-exchange chromatography and that differ in their thermal stabilities. 6. This series of observations suggests that a structural gene polymorphism may be one mechanism by which inheritance controls TS PST in humans. The isozymes of TS PST in liver may represent the products of alternative alleles for this polymorphism, alleles that might control the structure of TS PST in many human tissues.  相似文献   

17.
Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of catechol and phenolic drugs and xenobiotic compounds. Platelets and other tissues contain at least two forms of PST, forms that have been designated the "TL" and the "TS" forms. We measured the thermal stability of platelet TS PST in blood samples from 218 randomly selected unrelated subjects by heating platelet homogenates at 44 degrees C for 15 min. Thermal stability was expressed as the ratio of the enzyme activity remaining after preincubation to that in an unheated sample, a heated/control (H/C) ratio. The frequency distribution of H/C ratios for this population sample was bimodal, with a nadir at an H/C ratio of 0.33. Of the 218 subjects studied, 29 (13.3%) had thermolabile TS PST (H/C less than 0.33). Platelet samples were then obtained from subjects with thermolabile and thermostable TS platelet PST. PST activity in these platelet samples had similar apparent Km constants for substrates. IC50 values for inhibition of TS PST by 2,6-dichloro-4-nitrophenol in these samples were also nearly identical. The results of experiments in which platelet homogenates from subjects with thermolabile and thermostable TS PST were mixed and the results of experiments in which platelet homogenates were subjected to gel filtration chromatography were compatible with the conclusion that individual differences in TS PST thermal stability were properties of PST itself. Finally, there was a significant familial aggregation of the trait of thermolabile TS PST when H/C ratios were measured in platelet homogenates from 231 members of 49 randomly selected families.  相似文献   

18.
The purpose of this study was to investigate the hypothesis that reductions in Na+-K+- ATPase activity are associated with neuromuscular fatigue following isometric exercise. In control (Con) and exercised (Ex) legs, force and electromyogram were measured in 14 volunteers [age, 23.4 +/- 0.7 (SE) yr] before and immediately after (PST0), 1 h after (PST1), and 4 h after (PST4) isometric, single-leg extension exercise at ~60% of maximal voluntary contraction for 30 min using a 0.5 duty cycle (5-s contraction, 5-s rest). Tissue was obtained from vastus lateralis muscle before exercise in Con and after exercise in both the Con (PST0) and Ex legs (PST0, PST1, PST4), for the measurements of Na+-K+-ATPase activity, as determined by the 3-O-methylfluorescein phosphatase (3-O-MFPase) assay. Voluntary (maximal voluntary contraction) and elicited (10, 20, 50, 100 Hz) force was reduced 30-55% (P < 0.05) at PST0 and did not recover by PST4. Muscle action potential (M-wave) amplitude and area (measured in the vastus medialis) and 3-O-MFPase activity at PST0-Ex were less than that at PST0-Con (P < 0.05) by 37, 25, and 38%, respectively. M-wave area at PST1-Ex was also less than that at PST1-Con (P < 0.05). Changes in 3-O-MFPase activity correlated to changes in M-wave area across all time points (r = 0.38, P < 0.05, n = 45). These results demonstrate that Na+-K+- ATPase activity is reduced by sustained isometric exercise in humans from that in a matched Con leg and that this reduction in Na+-K+-ATPase activity is associated with loss of excitability as indicated by M-wave alterations.  相似文献   

19.
One conjugative pathway for the inactivation of endogenous and exogenous hydroxylated aromatic compounds is catalyzed by phenol (aryl) sulfotransferases (PSTs), which esterify phenolic acceptors with sulfate. The tracheobronchial epithelium is commonly exposed to phenolic drugs and pollutants, and metabolic sulfation and PST activity in this tissue have been previously demonstrated. To determine what factors may control PST expression, extracts of serum-free, growth factor-supplemented cultures of bovine bronchial epithelial cells were assayed for PST activity and PST antigen. The most significant finding was dose-dependent, apparent stimulated expression by hydrocortisone (EC50 = 4 nM, maximal stimulation at 20 nM). Time-course experiments, however, revealed progressive loss of PST in the absence of corticosteroid. After decay of extant PST in steroid-free medium, hydrocortisone reinduced the expression of PST three to fivefold. Western blots using mouse anti-bovine PST revealed corresponding increases in 32 kDa PST protein levels in response to hydrocortisone. Steady state kinetic analyses indicated apparent Km values of 1—3 μM for 2-naphthol regardless of culture conditions. These results suggest that detoxification of phenolic compounds by sulfation may be regulated by corticosteroids.  相似文献   

20.
斯氏假单胞菌A1501固氮新基因PST1305的功能分析   总被引:1,自引:0,他引:1  
摘要:【目的】研究斯氏假单胞菌A1501基因组“固氮岛”中PST1305基因在A1501生物固氮过程中所起的作用。【方法】利用同源重组与三亲接合的方法构建PST1305的非极性突变株。乙炔还原法测定固氮酶活。RT-PCR分析PST1305基因与其周围基因转录单元的关系,Real-Time PCR比较PST1305在最佳固氮与非固氮条件下表达水平的差异。【结果】突变株np1305的固氮酶活显著降低,功能互补菌株np1305Comp能基本恢复细胞的固氮作用。PST1305与其上游的nifB、fdxN、下游的nifQ等基因位于同一个转录单元,组成一个操纵子。基因芯片表明,PST1305基因在固氮比非固氮条件下表达量显著上调(约38.7倍),Real-Time PCR验证支持这一结果。【结论】PST1305基因参与固氮过程,其突变会影响固氮酶的活性,该基因可能通过参与A1501固氮酶电子传递或者固氮酶的氧保护过程影响固氮效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号