首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Inhibition of 5 alpha-reductase and anti-androgenicity were studied in rats treated with various 4-azasteroids. The known inhibitor, N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) served as a reference compound, and analogs of this basic molecule were assayed. Enhancement of enzyme inhibitory potency was usually seen with delta 1 analogs, whereas reduction in activity was noted with substitutuents such as delta 5, a spirotetrahydrofuran ring at C-17 or 4-deaza groups. Many of the 4-azasteroids had a much greater oral anti-androgenic effect against testosterone propionate (TP) than dihydrotestosterone propionate (DHTP). This difference in activity versus the two androgens is believed to reflect the necessity for TP to undergo reduction to DHT before becoming capable of stimulating prostatic growth. Inhibition of 5 alpha-reductase by active compounds prevented the conversion, thereby producing an anti-androgenic effect. In this regard, certain delta 1 analogs of 4-MA, particularly those bearing a 17 beta-(N-tert butylcarbamoyl) group, proved very effective against TP but were relatively inactive versus DHTP.  相似文献   

2.
4-Aza-5α-androstan-3-one 17β-(N-substituted carboxamides) are potent human type 2 5α-reductase (5aR) inhibitors with generally poor binding to the human androgen receptor (hAR). When the 17-amide N-substituent included an aromatic residue, potent dual inhibitors of both type 1 and 2 5aR are produced, but hAR binding remained poor. Tertiary-substituted-17-amides have reduced inhibition of both 5aR isozymes. The addition of an N4-methyl substitutent to the A-ring profoundly increased hAR affinity and the addition of unsaturation to the A-ring (Δ1) modestly augmented hAR binding. The unsubstituted carbanilides in the Δ1-N4-methyl series show some selectivity for type 1 5aR over the type 2 isozyme, whereas addition of aryl substituents, particularly at the 2-position, increased type 2 5aR binding to provide dual inhibitors with excellent hAR binding, e.g. N-(2-chlorophenyl)-3-oxo-4-methyl-4-aza-5α-androst-1-ene-17β-carboxamide (9c). Compounds of this type exhibit low nanomolar IC50s for both human 5aR isozymes as well as the human androgen receptor. Kinetic analysis confirms that the prototype 9c displays reversible, competitive inhibition of both human isozymes of 5aR with Ki values of less than 10 nM. Furthermore, this compound binds to the androgen receptor with an IC50 equal to 8 nM. Compounds in this series are projected to be powerful antagonists of testosterone and dihydrotestosterone action in vivo, with potential utility in the treatment of prostatic carcinoma (PC).  相似文献   

3.
In efforts to develop potent 5 alpha-reductase inhibitors without affinity for the androgen receptor, synthetic 3-oxo-5 alpha-steroids were tested for their ability to inhibit 5 alpha-reductase, using [14C]testosterone as the substrate, and for their ability to inhibit the binding of [3H]5 alpha-dihydrotestosterone to the androgen receptor of rat prostate cytosol. 2',3' alpha-Tetrahydrofuran-2'-spiro-17-(5 alpha-androstan-3-one) is not an inhibitor of 5 alpha-reductase and has a high affinity for the androgen receptor; substitution of the -CH2- at the 4-position with N-H resulted in a good inhibitor of 5 alpha-reductase. The 4-N-CH3 derivative is even more active, whereas the N-CH2-CH3 derivative is inactive. These 4-aza derivatives have much lower affinity for the androgen receptor than the parent compound. The 4-N-H derivatives of several 3-oxo-5 alpha-steroids were found to be 20-100% as potent as their corresponding 4-N-CH3 analogs as inhibitors of 5 alpha-reductase, whereas their androgen receptor affinities were at least 40-fold lower than their 4-N-CH3 analogs. Their 5 beta-isomers did not inhibit either 5 alpha-reductase or the androgen receptor binding of [3H]5 alpha-dihydrotestosterone. Two of these 4-N-H steroids, 17 beta-N,N-diethylcarbamoyl-4-aza-5 alpha-androstan-3-one and 17 beta-N, N-diisopropylcarbamoyl-4-aza-5 alpha-androstan-3-one, are potent 5 alpha-reductase inhibitors with Ki values equal to 29.2 +/- 1.7 and 12.6 +/- 0.8 nM, respectively, but have little affinity for the androgen receptor. The inhibition of 5 alpha-reductase by both compounds is competitive with testosterone. When [3H]testosterone was incubated with minced rat prostate in the presence of either of these two 4-azasteroids, the nuclear concentration of 5 alpha-dihydrotestosterone decreased and that of testosterone increased. The total nuclear uptake of testosterone plus 5 alpha-dihydrotestosterone was not significantly affected. These 4-azasteroids should be useful for investigating the importance of 5 alpha-reductase in androgen action in vivo.  相似文献   

4.
By means of high performance liquid chromatography and gas chromatography-mass spectrometry it has been found that 5 alpha-androstane-3 beta,17 beta-diol sulfate and 3 beta-hydroxy-5 alpha-androstan-17-one sulfate (epiandrosterone) are major secretory steroids of the mature boar testes. These same compounds were similarly identified in culture media when porcine Leydig cells were incubated with androstenedione as substrate. In addition, they were seen as the principal secretory products when [3H]androstenedione and [3H]testosterone were used as substrates; and their presence was greatly reduced by an inhibitor of 5 alpha-reductase (N,N-diethyl,4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide). Greater quantities of 5 alpha-androstanediol than epiandrosterone were noted in all instances. These findings provide further evidence of the versatile activity of the boar testes in steroidogenesis.  相似文献   

5.
21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a Ki value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [3H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2-3H]Diazo-MAPD binds to a single high affinity site (Kd 8 nM, 125 pmol binding sites/mg of protein) in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids (5 alpha-dihydrotestosterone and 5 alpha-androstan-3 alpha, 17 beta-diol). NADPH stimulates the binding of [3H] diazo-MAPD to microsomes of male rat liver and prostate. UV irradiation also induces conjugation of [3H] diazo-MAPD to these microsomes. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000.  相似文献   

6.
Inhibitors of aromatase and 5α-reductase may be of use for the therapy of postmenopausal breast cancer and benign prostatic hyperplasia, respectively. FCE 27993 is a novel steroidal irreversible aromatase inhibitor structurally related to exemestane (FCE 24304). The compound was found to be a very potent competitive inhibitor of human placental aromatase, with a Ki of 7.2 nM (4.3 nM for exemestane). In preincubation studies with placental aromatase FCE 27993, like exemestane, was found to cause time-dependent inhibition with a higher rate of inactivation ( ) and a similar Ki(inact) (56 vs 66 nM). The compound was found to have a very low binding affinity to the androgen receptor (RBA 0.09% of dihydrotestosterone) and, in contrast to exemestane, no androgenic activity up to 100 mg/kg/day s.c. in immature castrated rats. Among a series of novel 4-azasteroids with fluoro-substituted-17β-amidic side chains, three compounds, namely FCE 28260, FCE 28175 and FCE 27837, were identified as potent in vitro and in vivo inhibitors of prostatic 5α-reductase. Their IC50 values were found to be 16, 38 and 51 nM for the inhibition of the human enzyme, and 15, 20 and 60 nM for the inhibition of the rat enzyme, respectively. When given orally for 7 days in castrated and testosterone (Silastic implants) supplemented rats, the new compounds were very effective in reducing prostate growth. At a dose of 0.3 mg/kg/day inhibitions of 42, 36 and 41% were caused by FCE 28260, FCE 28175 and FCE 27837, respectively.  相似文献   

7.
The synthesis of N-substituted piperidine-4-(benzylidene-4-carboxylic acids) is described [benzoyl (1), benzyl (2), adamantanoyl (3), cyclohexanoyl (4), cyclohexylacetyl (5), diphenylacetyl (6), dicyclohexylacetyl (7), 2-propylpentanoyl (8), diphenylcarbamoyl (9), trimethylacetyl (10), 3,3-dimethylacryloyl (11), dicyclohexylacetyl derivative of the benzyl compound (12)]. Compounds were tested for inhibitory activity toward 5alpha-reductase isozymes 1 and 2 in human and rat. The test compounds inhibited 5alpha-reductase, showing a broad range of inhibitory potencies. In rat, compounds 6 (IC50 = 3.44 and 0.37 microM for type 1 and 2, respectively) and 9 (IC50=0.54 and 0.69 microM for type 1 and 2, respectively) displayed the best inhibition toward both isozymes. Compound 7 showed a strong inhibition toward type 2 human and rat enzyme (IC50 = 60 and 80 nM) but only a moderate activity versus type 1 enzyme (IC50 approximately 10 microM for rat and human enzyme). In vivo, selected compounds reduced prostate weights in castrated testosterone treated rats.  相似文献   

8.
FCE 27837 is a novel inhibitor of 5α-reductase, the enzyme responsible for the conversion of testosterone (T) to 5α-dihydrotestosterone (DHT). The compound caused inhibition of human and rat prostatic enzymes, with IC50 values of 51 and 60 nM, respectively. The in vivo effect of FCE 27837 on 5α-reductase was evaluated in adult male rats, treated orally at 10 mg/kg/day for 10 days. The compound caused 33 and 42% reductions in ventral prostate and seminal vesicle weights, respectively. The prostatic content of DHT, measured 6 h after the 10th dose of FCE 27837, was reduced by 75%, whereas T content increased by 442%. Similar effects were observed with 10 mg/kg/day of finasteride, whereas epristeride, tested at the same oral dose, was found to be the least effective compound, decreasing prostate weight by 22% and DHT content by 46%. Castration caused >90% reductions in prostatic weight and prostatic DHT.  相似文献   

9.
5 alpha-Dihydrotestosterone, the principal androgen mediating prostate growth and function in the rat, is formed from testosterone by steroid 5 alpha-reductase. The inactivation of 5 alpha-dihydrotestosterone involves reversible reduction to 5 alpha-androstane-3 beta,17 beta-diol by 3 beta-hydroxysteroid oxidoreductase followed by 6 alpha-, 7 alpha-, or 7 beta-hydroxylation. 5 alpha-Androstane-3 beta,17 beta-diol hydroxylation represents the ultimate inactivation step of dihydrotestosterone in rat prostate and is apparently catalyzed by a single, high-affinity (Km approximately 0.5 microM) microsomal cytochrome P450 enzyme. The present studies were designed to determine if 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes is inhibited by agents that are known inhibitors of androgen-metabolizing enzymes. Inhibitors of steroid 5 alpha-reductase (4-azasteroid analogs; 10 microM) or inhibitors of 3 beta-hydroxysteroid oxidoreductase (trilostane, azastene, and cyanoketone; 10 microM) had no appreciable effect on the 6 alpha-, 7 alpha-, or 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (10 microM) by rat prostate microsomes. Imidazole-type antimycotic drugs (ketoconazole, clotrimazole, and miconazole; 0.1-10 microM) all markedly inhibited 5 alpha-androstane-3 beta,17 beta-diol hydroxylation in a concentration-dependent manner, whereas triazole-type antimycotic drugs (fluconazole and itraconazole; 0.1-10 microM) had no inhibitory effect. The rank order of inhibitory potency of the imidazole-type antimycotic drugs was miconazole greater than clotrimazole greater than ketoconazole. In the case of clotrimazole, the inhibition was shown to be competitive in nature, with a Ki of 0.03 microM. The imidazole-type antimycotic drugs inhibited all three pathways of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation to the same extent, which provides further evidence that, in rat prostate microsomes, a single cytochrome P450 enzyme catalyzes the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol. These studies demonstrate that certain imidazole-type compounds are potent, competitive inhibitors of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes, which is consistent with the effect of these antimycotic drugs on cytochrome P450 enzymes involved in the metabolism of other androgens and steroids.  相似文献   

10.
The aim of this study was to determine the biological activity of 4 steroidal derivatives (9a, 9b and 10a, 10b) prepared from the commercially available 17alpha acetoxyprogesterone, where 9a, 9b, have the Delta(4)-3-oxo structure and 10a and 10b an epoxy group at C-4 and C-5. These steroids were tested as inhibitors of 5alpha-reductase enzyme, which is present in androgen-dependent tissues and converts testosterone to its more active reduced metabolite dihydrotestosterone. The pharmacological effect of these steroids was demonstrated by the significant decrease of the weight of the prostate gland of gonadectomized hamsters treated with testosterone plus finasteride or with steroids 10a and 10b. For the studies in vitro the IC(50) values were determined by measuring the steroid concentration that inhibits 50% of the activity of-5alpha-reductase. In this study we also determined the capacity of these steroids to bind to the androgen receptor present in the rat prostate cytosol. The results from this work indicated that compounds 9a, 9b, 10a, and 10b inhibited the 5alpha reductase activity with IC(50) values of 360, 370, 13 and 4.9 nM respectively. However these steroids did not bind to the androgen receptors since none competed with labeled mibolerone. Steroid 10b, an epoxy steroidal derivative containing bromine atom in the ester moiety, was the most active inhibitor of 5alpha-reductase enzyme, present in human prostate homogenates with an IC(50) value of 4.9 nM and also showed in vivo pharmacological activity since it decreased the weight of the prostate from hamsters treated with testosterone in a similar way as finasteride.  相似文献   

11.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

12.
A novel series of 4-thiazolylimidazoles was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. N-{[5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-2-yl]methyl}butanamide 20, a potent and selective ALK5 inhibitor, exhibited good enzyme inhibitory activity (IC(50)=8.2nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC(50)=32nM).  相似文献   

13.
Synthesis, biological evaluation and structure-activity relationships for a series of novel nonpeptide small molecule inhibitors of caspase-3 are described. Among the studied compounds, 8-sulfamide derivatives of 1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines have been identified as potent inhibitors of caspases-3. The most active compound within this series (8f) inhibited caspase-3 with IC(50)=4 nM.  相似文献   

14.
The purpose of the present study was to test the hypothesis that rat prostate microsomes contain a single cytochrome P450 enzyme responsible for the conversion of 5 alpha-androstane-3 beta,17 beta-diol to a series of trihydroxylated products. The three major metabolites formed by in vitro incubation of 5 alpha-[3H]androstane-3 beta,17 beta-diol with rat prostate microsomes were apparently 5 alpha-androstane-3 beta,6 alpha,17 beta-triol, 5 alpha-androstane-3 beta,7 alpha,17 beta-triol, and 5 alpha-androstane-3 beta,7 beta,17 beta-triol, which were resolved and quantified by reverse-phase HPLC with a flow through radioactivity detector. The ratio of the three metabolites remained constant as a function of incubation time, microsomal protein concentration, ionic strength, and substrate concentration. The ratio of the three metabolites was dependent on pH, apparently because the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol shifted from the 6 alpha- to the 7 alpha-position with increasing pH (6.8-8.0). The V(max) values were 380, 160, and 60 pmol/mg microsomal protein/min for the rate of 6 alpha-, 7 alpha-, and 7 beta-hydroxylation, respectively. Similar Km values (0.5-0.7 microM) were measured for enzymatic formation of all three metabolites, which suggests that formation of all three metabolites was catalyzed by a single, high-affinity enzyme. Testosterone, 5 alpha-dihydrotestosterone, and 5 alpha-androstane-3 alpha,17 beta-diol did not appreciably inhibit the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, suggesting that this enzyme exhibits a high degree of substrate specificity. Formation of all three metabolites was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase (85%) and by a 9:1 mixture of carbon monoxide and oxygen (60%). Several chemical inhibitors of cytochrome P450 enzymes, especially the antimycotic drug clotrimazole, also inhibited the formation of all three metabolites. Polyclonal antibodies that recognize liver cytochrome P450 1A, 2A, 2B, 2C, and 3A enzymes did not inhibit 5 alpha-androstane-3 beta,17 beta-diol hydroxylase activity. Overall, these results are consistent with the hypothesis that the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes is catalyzed by a single, high-affinity P450 enzyme. This cytochrome P450 enzyme appears to be structurally distinct from those in the 1A, 2A, 2B, 2C, and 3A gene families.  相似文献   

15.
Addition of 17 beta-N,N,-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstane-3-one, a potent 5 alpha-reductase inhibitor, to granulosa cell cultures inhibited the FSH-stimulated progesterone synthesis during both the initial 48 h induction period and the subsequent 6h test period in a dose-dependent fashion. Besides being a more potent inhibitor of FSH-stimulated progesterone synthesis than testosterone, 4-MA also synergized with the androgen to inhibit progesterone synthesis. These results indicate that 4-MA has a direct inhibitory action on 3 beta-HSD.  相似文献   

16.
Androsterone derivatives substituted at position 3 were synthesized starting from dihydrotestosterone in a short sequence of reactions. They proved to be potent inhibitors (IC50 = 57-147 nM) of type 3 17beta-hydroxysteroid dehydrogenase, a key enzyme of steroidogenesis, which catalyzes the transformation of androstenedione to steroid active androgen testosterone.  相似文献   

17.
Aiming at the development of new drugs for the treatment of prostate cancer, the effects of steroidal compounds and one non-steroidal substance on androgen biosynthesis were evaluated in vitro and in vivo. Sa 40 [17-(5-pyrimidyl)androsta-5,16-diene-3beta-ol], its 3-acetyl derivate Sa 41 and BW 19 [3,4-dihydro-2-(4-imidazolylmethyl)-6-methoxy-1-methyl-naphthalene] are compounds from our group, which have been developed as inhibitors of CYP 17 (17alpha-hydroxylase-C17, 20-lyase, the key enzyme in androgen biosynthesis). They have been compared with CB 7598 [abiraterone: 17-(3-pyridyl)androsta-5,16-diene-3beta-ol], its 3-acetyl compound CB 7630 and ketoconazole, compounds which already have been used clinically. The most potent compound toward human CYP 17 (testicular microsomes) was Sa 40 (IC(50) value of 24 nM), followed by Sa 41, CB 7598, BW 19, CB 7630 and ketoconazole. Sa 40 shows a type II difference spectrum and a non-competitive type of inhibition (K(i) value of 16 nM). No recovery of enzyme activity was observed after preincubation of CYP 17 with Sa 40 and subsequent charcoal treatment. In Escherichia coli cells coexpressing human CYP 17 and NADPH-P450 reductase, Sa 40 was more active than CB 7598 and BW 19, whereas the acetyl compounds were not active. The latter three compounds were equally active towards rat CYP 17. Male Sprague-Dawley (SD) rats were administered daily for 14 days BW 19 and the acetyl derivatives Sa 41 and CB 7630 as prodrugs (0.1 mmol/kg intraperitoneally). The test compounds strongly reduced plasma testosterone concentration, as well as prostate and seminal vesicles weights. They showed moderate inhibitory effects on the weights of levator ani, bulbocavernosus and testes, whereas they led to an increase in adrenal and pituitary weights. The only exception was BW 19 which did not change pituitary weights. Based on its superiority on the human enzyme, it was concluded that Sa 40 in its 3beta-acetate form (Sa 41) could be a promising candidate for clinical evaluation.  相似文献   

18.
Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.  相似文献   

19.
Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2, IC(50)=31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC(50)=31 nM), showed 5-fold higher antagonistic activity than 1 in (45)Ca(2+)-influx assay.  相似文献   

20.
1-(1H-Benzimidazol-5-yl)-3-tert-butylurea derivatives have been identified as a novel class of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists. Herein, we disclose the synthesis and structure-activity relationships (SAR) of this class resulting in the identification of compound 12c, with dual functional activity on human and rat receptors (rat LHRH: IC50=120 nM; human LHRH: IC50=18 nM). These SAR studies suggest that 1-(1H-benzimidazol-5-yl)-3-tert-butylurea is a new pharmacophore for small molecule LHRH antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号