首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sleep, especially rapid-eye-movement sleep, causes fundamental modifications of respiratory muscle activity and control mechanisms, modifications that can predispose individuals to sleep-related breathing disorders. One of the most common of these disorders is obstructive sleep apnea (OSA) that affects approximately 4% of adults. OSA is caused by repeated episodes of pharyngeal airway obstruction that can occur hundreds of times per night, leading to recurrent asphyxia, arousals from sleep, daytime sleepiness, and adverse cardiovascular and cerebrovascular consequences. OSA is caused by the effects of sleep on pharyngeal muscle tone in individuals with already narrow upper airways. Moreover, since OSA occurs only in sleep, this disorder by definition is a state-dependent process ultimately caused by the influence of sleep neural mechanisms on the activity of pharyngeal motoneurons. This review synthesizes recent findings relating to control of pharyngeal muscle activity across sleep-wake states, with special emphasis on the influence of neuromodulators acting at the hypoglossal motor nucleus that inervates the genioglossus muscle of the tongue. The results of such basic physiological studies may be relevant to identifying and developing new pharmacological strategies to augment pharyngeal muscle activity in sleep, especially rapid-eye-movement sleep, as potential treatments for OSA.  相似文献   

2.
Effects of upper airway anesthesia on pharyngeal patency during sleep   总被引:2,自引:0,他引:2  
Pharyngeal patency depends, in part, on the tone and inspiratory activation of pharyngeal dilator muscles. To evaluate the influence of upper airway sensory feedback on pharyngeal muscle tone and thus pharyngeal patency, we measured pharyngeal airflow resistance and breathing pattern in 15 normal, supine subjects before and after topical lidocaine anesthesia of the pharynx and glottis. Studies were conducted during sleep and during quiet, relaxed wakefulness before sleep onset. Maximal flow-volume loops were also measured before and after anesthesia. During sleep, pharyngeal resistance at peak inspiratory flow increased by 63% after topical anesthesia (P less than 0.01). Resistance during expiration increased by 40% (P less than 0.01). Similar changes were observed during quiet wakefulness. However, upper airway anesthesia did not affect breathing pattern during sleep and did not alter awake flow-volume loops. These results indicate that pharyngeal patency during sleep is compromised when the upper airway is anesthetized and suggest that upper airway reflexes, which promote pharyngeal patency, exist in humans.  相似文献   

3.
The collapsibility of pharyngeal walls, characteristic of patients with obstructive sleep apnea, likely results from reduced tone of the pharyngeal muscles. This reduction in the upper airway muscle tone may not end at the pharynx but may extend further distally, e.g., into the trachea. Because tracheal tone cannot be measured directly in conscious humans, we inferred the tone from the relative hysteresis of the tracheal area compared with the lung. Relative hysteresis was measured by plotting the cross-sectional area of a tracheal segment obtained by the acoustic reflection technique vs. lung volume. All measurements were performed during wakefulness. We found that in 42 patients with obstructive sleep apnea (apnea/hypopnea index greater than 10), relative hysteresis of the proximal trachea was predominantly clockwise, i.e., smaller than that of the lung parenchyma; in the 33 nonapneic patients (apnea/hypopnea index less than or equal to 10), it was predominantly counter-clockwise, i.e., larger than that of the lung parenchyma. For the distal trachea all patients, apneic and nonapneic, had similar, clockwise, relative hysteresis. We conclude that reduction in the upper airway muscle tone in patients with obstructive sleep apnea extends into the trachea.  相似文献   

4.
In snorers, the physiologic decrease of postural muscle tone during sleep results in increased collapsibility of the upper airway. Measurement of nasal pressure changes with prongs is increasingly used to monitor flow kinetics through a collapsing upper airway. This report presents a mathematical model to predict nasal flow profile from three critical components that control upper airway patency during sleep. The model includes the respiratory pump drive, the stiffness of the pharyngeal soft tissues, and the dynamic support of the muscles surrounding the upper airway. Depending on these three components, the proposed model is able to reproduce the characteristic changes in flow profile that are clinically observed in snorers and non-snorers during sleep.  相似文献   

5.
The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.  相似文献   

6.
Although pharyngeal muscles respond robustly to increasing PCO(2) during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO(2)-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal PCO(2) (PET(CO(2))) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO(2) (PET(CO(2)) = 6 Torr above the eupneic level) were also assessed during SWS (n = 9) or stage 2 sleep (n = 7). PET(CO(2)) increased spontaneously by 0.8 +/- 0.1 Torr from stage 2 to SWS (from 43.3 +/- 0.6 to 44.1 +/- 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 +/- 0.1 to 11.9 +/- 0.3 l/min in stage 2 and 8.6 +/- 0.4 to 12.7 +/- 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of PET(CO(2)) (50.4 +/- 1.6 Torr in stage 2, and 50.4 +/- 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.  相似文献   

7.
Pedunculopontine tegmental nucleus (PPN) contributes to the control muscle tone by modulating the activities of pontomedullary reticulospinal systems during wakefulness and rapid eye movement (REM) sleep. The PPN receives GABAergic projection from the substantia nigra pars reticulata (SNr), an output nucleus of the basal ganglia. Here we examined how GABAergic SNr-PPN projection controls the activity of the pontomedullary reticulospinal tract that constitutes muscle tone inhibitory system. Intracellular recording was made from 121 motoneurons in the lumbosacral segments in decerebrate cats (n=14). Short train pulses of stimuli (3 pulses with 5 ms intervals, 10-40 mA) applied to the PPN, where cholinergic neurons were densely distributed, evoked eye movements toward to the contralateral direction and bilaterally suppressed extensor muscle activities. The identical PPN stimulation induced IPSPs, which had a peak latency of 40-50 ms with a duration of 40-50 ms, in extensor and flexor motoneurons. The late-latency IPSPs were mediated by chloride ions. Microinjection of atropine sulfate (20 mM, 0.25 ml) into the pontine reticular formation (PRF) reduced the amplitude of the IPSPs. Although conditioning stimuli applied to the SNr (40-60 mA and 100 Hz) alone did not induce any postsynaptic effects on motoneurons, it reduced the amplitude of the PPN-induced IPSPs. Subsequent injection of bicuculline (5 mM, 0.25 ml) into the PPN blocked the SNr effects. Microinjections of NMDA (5 mM, 0.25 ml) and muscimol (5 mM, 0.25 ml) into the SNr reduced and increased the amplitude of the PPN-induced IPSPs, respectively. These results suggest that GABAergic basal ganglia output controls postural muscle tone by modulating the activity of cholinergic PPN neurons which activate the muscle tone inhibitory system. The SNr-PPN projection may contribute to not only control of muscle tone during movements in wakefulness but also modulation of muscular atonia of REM sleep. Dysfunction of the SNr-PPN projection may therefore be involved in sleep disturbances in basal ganglia disorders.  相似文献   

8.
The neural substrates of infant sleep in rats   总被引:2,自引:1,他引:1       下载免费PDF全文
Sleep is a poorly understood behavior that predominates during infancy but is studied almost exclusively in adults. One perceived impediment to investigations of sleep early in ontogeny is the absence of state-dependent neocortical activity. Nonetheless, in infant rats, sleep is reliably characterized by the presence of tonic (i.e., muscle atonia) and phasic (i.e., myoclonic twitching) components; the neural circuitry underlying these components, however, is unknown. Recently, we described a medullary inhibitory area (MIA) in week-old rats that is necessary but not sufficient for the normal expression of atonia. Here we report that the infant MIA receives projections from areas containing neurons that exhibit state-dependent activity. Specifically, neurons within these areas, including the subcoeruleus (SubLC), pontis oralis (PO), and dorsolateral pontine tegmentum (DLPT), exhibit discharge profiles that suggest causal roles in the modulation of muscle tone and the production of myoclonic twitches. Indeed, lesions in the SubLC and PO decreased the expression of muscle atonia without affecting twitching (resulting in “REM sleep without atonia”), whereas lesions of the DLPT increased the expression of atonia while decreasing the amount of twitching. Thus, the neural substrates of infant sleep are strikingly similar to those of adults, a surprising finding in light of theories that discount the contribution of supraspinal neural elements to sleep before the onset of state-dependent neocortical activity.  相似文献   

9.
John J  Wu MF  Boehmer LN  Siegel JM 《Neuron》2004,42(4):619-634
Noradrenergic, serotonergic, and histaminergic neurons are continuously active during waking, reduce discharge during NREM sleep, and cease discharge during REM sleep. Cataplexy, a symptom associated with narcolepsy, is a waking state in which muscle tone is lost, as it is in REM sleep, while environmental awareness continues, as in alert waking. In prior work, we reported that, during cataplexy, noradrenergic neurons cease discharge, and serotonergic neurons greatly reduce activity. We now report that, in contrast to these other monoaminergic "REM-off" cell groups, histamine neurons are active in cataplexy at a level similar to or greater than that in quiet waking. We hypothesize that the activity of histamine cells is linked to the maintenance of waking, in contrast to activity in noradrenergic and serotonergic neurons, which is more tightly coupled to the maintenance of muscle tone in waking and its loss in REM sleep and cataplexy.  相似文献   

10.
REM sleep triggers a potent suppression of postural muscle tone - i.e., REM atonia. However, motor control during REM sleep is paradoxical because overall brain activity is maximal, but motor output is minimal. The skeletal motor system remains quiescent during REM sleep because somatic motoneurons are powerfully inactivated. Determining the mechanisms triggering loss of motoneuron function during REM sleep is important because breakdown in REM sleep motor control underlies sleep disorders such as REM sleep behavior disorder (RBD) and cataplexy/narcolepsy. For example, RBD is characterized by dramatic REM motor activation resulting in dream enactment and subsequent patient injury. In contrast, cataplexy a pathognomonic symptom of narcolepsy - is caused by the involuntary onset of REM-like atonia during wakefulness. This review highlights recent work from my laboratory that examines how motoneuron function is lost during normal REM sleep and it also identifies potential biochemical mechanisms underlying abnormal motor control in both RBD and cataplexy. First, I show that both GABAB and GABAA/glycine mediated inhibition of motoneurons is required for generating REM atonia. Next, I show that impaired GABA and glycine neurotransmission triggers the cardinal features of RBD in a transgenic mouse model. Last, I show that loss of an excitatory noradrenergic drive onto motoneurons is, at least in part, responsible for the loss of postural muscle tone during cataplexy in narcoleptic mice. Together, this research indicates that multiple transmitters systems are responsible for regulating postural muscle tone during REM sleep, RBD and cataplexy.  相似文献   

11.
Geniohyoid muscle activity in normal men during wakefulness and sleep   总被引:4,自引:0,他引:4  
Reduction in the activity of upper airway "dilator" muscles during sleep may allow the pharyngeal airway to collapse in some individuals. However, quantitative studies concerning the effect of sleep on specific upper airway muscles that may influence pharyngeal patency are sparse and inconclusive. We studied seven normal men (mean age 27, range 22-37 yr) during a single nocturnal sleep study and recorded sleep staging parameters, ventilation, and geniohyoid muscle electromyogram (EMGgh) during nasal breathing throughout the night. Anatomic landmarks for placement of intramuscular geniohyoid recording electrodes were determined from a cadaver study. These landmarks were used in percutaneous placement of wire electrodes, and raw and moving-time-averaged EMGgh activities were recorded. Sleep stage was determined using standard criteria. Stable periods of wakefulness and non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep were selected for analysis. The EMGgh exhibited phasic inspiratory activity during wakefulness and sleep in all subjects. In six of seven subjects, mean and peak inspiratory EMGgh activities were significant (P less than 0.05) reduced during stages 2 and 3/4 NREM sleep and REM sleep compared with wakefulness. This reduction of EMGgh activity was shown to result from a sleep-related decline in the level of tonic muscle activity. Phasic inspiratory EMGgh activity during all stages of sleep was not significantly different from that during wakefulness. Of interest, tonic, phasic, and peak EMGgh activities were not significantly reduced during REM sleep compared with any other sleep stage in any subject. In addition, the slope of onset of phasic EMGgh activity was not different during stage 2 NREM and REM sleep compared with wakefulness in these subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A three-element, pressure- and state (sleep and wake) -dependent contraction model of the genioglossal muscle was developed based on the microstructure of skeletal muscle and the cross-bridge theory. This model establishes a direct connection between the contractile forces generated in muscle fibers and the measured electromyogram signals during various upper airway conditions. This effectively avoids the difficulty of determining muscle shortening velocity during complex pharyngeal conditions when modeling the muscle's contractile behaviors. The activation of the genioglossal muscle under different conditions was then simulated. A sensitivity analysis was performed to determine the effects of varying each modeled parameter on the muscle's contractile behaviors. This muscle contraction model was then incorporated into our anatomically correct, two-dimensional computational model of the pharyngeal airway to perform a finite-element analysis of air flow, tissue deformation, and airway collapse. The model-predicted muscle deformations are consistent with previous observations regarding upper airway behavior in normal subjects.  相似文献   

13.
Obstructive sleep apnea patients experience recurrent upper airway (UA) collapse due to decreases in the UA dilator muscle activity during sleep. In contrast, activation of UA dilators reduces pharyngeal critical pressure (Pcrit, an index of pharyngeal collapsibility), suggesting an inverse relationship between pharyngeal collapsibility and dilator activity. Since most UA muscles display phasic respiratory activity, we hypothesized that pharyngeal collapsibility is modulated by respiratory drive via neuromuscular mechanisms. Adult male Sprague-Dawley rats were anesthetized, vagotomized, and ventilated (normocapnia). In one group, integrated genioglossal activity, Pcrit, and maximal airflow (V(max)) were measured at three expiration and five inspiration time points within the breathing cycle. Pcrit was closely and inversely related to phasic genioglossal activity, with the value measured at peak inspiration being the lowest. In other groups, the variables were measured during expiration and peak inspiration, before and after each of five manipulations. Pcrit was 26% more negative (-15.0 ± 1.0 cmH(2)O, -18.9 ± 1.2 cmH(2)O; n = 23), V(max) was 7% larger (31.0 ± 1.0 ml/s, 33.2 ± 1.1 ml/s), nasal resistance was 12% bigger [0.49 ± 0.05 cmH(2)O/(ml/s), 0.59 ± 0.05 cmH(2)O/(ml/s)], and latency to induced UA closure was 14% longer (55 ± 4 ms, 63 ± 5 ms) during peak inspiration vs. expiration (all P < 0.005). The expiration-inspiration difference in Pcrit was abolished with neuromuscular blockade, hypocapnic apnea, or death but was not reduced by the superior laryngeal nerve transection or altered by tracheal displacement. Collectively, these results suggest that pharyngeal collapsibility is moment-by-moment modulated by respiratory drive and this phasic modulation requires neuromuscular mechanisms, but not the UA negative pressure reflex or tracheal displacement by phasic lung inflation.  相似文献   

14.
Breathing is a complex act requiring the coordinated activity of multiple groups of muscles. Thoracic and abdominal respiratory muscles expand and contract the lungs, whereas pharyngeal and laryngeal respiratory muscles maintain upper airway patency and regulate upper airway resistance. An appreciation of the importance of the latter muscle group in maintaining ventilatory homeostasis and in the pathophysiology of sleep apnea has led to extensive studies examining the neural regulation of pharyngeal dilator muscles. The present review examines the role of heterogeneity in motoneuron and muscle properties in determining the diversity in the electrical and mechanical behaviors of thoracic compared with pharyngeal muscle groups. Specifically, phrenic and hypoglossal motoneuron electrophysiological properties influence whether and the extent to which these neurons will fire in response to a given synaptic input arising from chemo- and mechanoreceptors and from respiratory and nonrespiratory pattern generators. Furthermore, thoracic and pharyngeal muscle properties determine the mechanical response to motoneuronal activity, including the speed of contraction, relationships between motoneuron firing frequency and force production, and whether force is maintained during repetitive activation. Heterogeneity in the functional capabilities of these motoneurons and muscles is in turn determined by diversity of their structural and biochemical properties. Thus, intrinsic properties of respiratory motoneurons and muscles act in concert with neuronal drives in defining the complex electrical and mechanical behavior of pharyngeal and thoracic respiratory motor systems.  相似文献   

15.
A model of orifice flow has been used to analyze the relationships among pressure, flow, and genioglossal electromyographic activity in the human pharynx during inspiration. The orifice flow model permits one to assess the character of airflow (laminar or turbulent) and to estimate the cross-sectional area of the orifice from pressure and flow measurements. On the basis of other data (J. Appl. Physiol. 73: 584-590, 1992), this analysis suggests that pharyngeal airflow is turbulent. Furthermore the area of the pharynx appears to increase as flow increases, but the actual change in pharyngeal diameter necessary to fit the pressure-flow data is quite small (0.11-0.87 cm, depending on the assumptions in the model). The flow-related increase in orifice area can be attributed, in part, to the activation of the genioglossus muscle. However, other flow-related factors may also contribute to pharyngeal dilation as airflow increases. Different airway shapes (circular and elliptical) and orientations (major axis anteroposterior and lateral) were incorporated into the model calculations; these factors modify considerably the apparent efficiency of genioglossal electromyographic activity. Genioglossal muscle shortening increases pharyngeal area and reduces pharyngeal resistance more effectively when the pharynx is elliptical, with the long axis of the ellipse oriented laterally. Hence the genioglossus may operate at a significant mechanical disadvantage in those patients with obstructive sleep apnea with a small sagittally oriented pharyngeal lumen.  相似文献   

16.
The neural control of the accessory respiratory muscles regulating upper airway patency is poorly understood. This is particularly true with regard to the declines in electromyographic (EMG) activity of upper airway muscles during sleep. To specify the cellular mechanisms causing decreased upper airway muscle tone during sleep, we used an established pharmacological model of rapid eye movement (REM) sleep. With this model, a REM sleep-like state was reliably produced by microinjecting the cholinergic agonist carbachol directly into the pontine reticular formation of the cat. EMG recording were taken from the posterior cricoarytenoid (PCA) muscles of the larynx during wakefulness and the carbachol-induced, REM sleep-like state. This experimental model had not been previously used to study the neuropharmacological control of the upper airway. The results revealed a dose-dependent decrease in PCA muscle tone caused by pontine microinjections of carbachol. To investigate the cholinergic specificity of these effects, the muscarinic cholinergic antagonist pirenzepine was centrally administered before carbachol. Pirenzepine pretreatment effectively blocked the carbachol-induced, REM sleep-like state and attendant changes in muscle tone. These results specify for the first time that muscarinic cholinergic mechanisms within the pontine reticular formation can causally mediate state-dependent hypotonia in accessory respiratory muscles of the upper airway.  相似文献   

17.
18.
In recent years, sleep abnormalities have increasingly been observed in patients with movement disorders. During sleep, most patients with Parkinson's disease also exhibit the movements characteristically seen during the wake period. Movement activity during sleep may impair sleep quality and lead to daytime sleepiness and reduced quality of life. Disordered REM sleep with enhanced muscle tone is common in patients with neurodegenerative disease, and may precede the clinically evident symptoms of Parkinson's disease by years. Sleep disorders in patients with Parkinson's disease are common, and require the application of individual treatment strategies. A further frequent disorder primarily classified as a sleep disorder (dyssomnia) is the restless legs syndrome (RLS), which is closely related to the nocturnal periodic limb movement disorder and affects up to 15% of the population. The present review focuses on nocturnal motor activity and sleep in Parkinson's disease and RLS.  相似文献   

19.

Background

The physiological mechanisms that allow for sleeping in a vertical position, which is primordial for arboreal primates, have not been studied yet.

Methods

A non‐invasive polysomnographic study of 6 spider monkeys (Ateles geoffroyi) was conducted. The relative beta power of the motor cortex and its linear relation with muscle tone in the facial mentalis muscle and the abductor caudae medialis muscle of the tail during wakefulness and sleep stages were calculated.

Results

A strong negative linear relationship (= ?.8, = .03) was found between the relative power of the beta2 band in the left motor cortex and abductor caudae medialis muscle tone during delta sleep.

Conclusions

The left motor cortex, through beta2 band activity, interacts with abductor caudae medialis muscle tonicity during delta sleep. This interaction takes part in the mechanisms that regulate the sleep postures.  相似文献   

20.
Biomechanics and Modeling in Mechanobiology - A Hill model-based phenomenological method for muscle activation was used to investigate defectiveness of the palatal muscle tone during sleep for...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号