首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of cadmium on cell cycle progression in Chinese hamster ovary cells   总被引:4,自引:0,他引:4  
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest.  相似文献   

2.
The human promyelocytic leukaemia cell line HL-60 can be induced to differentiate towards mature granulocytes by treatment with dibutyryl cyclic adenosine-3',5'-monophosphate (dbcAMP). Differentiation begins within 16-24 h of treatment and is associated with a time- and dose-dependent accumulation of cells in the G0/G1 phase of the cell cycle with a concomitant decrease in the number of cells in the S and G2 + M phases. Using acridine orange staining, we found that the RNA content of the cells also decreased following differentiation. Stathmokinetic analysis of HL-60 cell populations following dbcAMP treatment showed no effect on the total number of cells in the G0/G1 or S phases, or the rate of progression of cells through these cell cycle compartments. In contrast, dbcAMP was found to induce a transient arrest of the cells in the G2 phase. We also found that differentiation induced by dbcAMP did not require progression of the cells through the cell cycle. Cells arrested in either G1/S by hydroxyurea or G2 + M by colcemid eventually expressed markers of mature granulocytes. These results demonstrate that dbcAMP modulates cell cycle progression. However, these cell cycle changes alone are insufficient to induce granulocytic differentiation of HL-60 cells.  相似文献   

3.
High resolution, multiparameter analysis using the flow cytometric BrdU/Hoechst quenching technique has been applied to study cell cycle kinetics and vimentin expression in individual cells of asynchronously grown MPC-11 mouse plasmacytoma cell cultures treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) to induce in vitro differentiation. BrdU treatment up to 16 h in the absence or presence of TPA did not affect either cell cycle progression or the kinetics or quantity of vimentin expression. TPA-treated cells became arrested in G1 phase of the second cell cycle; however, this G1 phase arrest was transient only. In addition, G1 phase cells located prior to a putative transition point at the beginning of TPA treatment were completely blocked in cell cycle progression. There is also evidence that cells located in G1 or G2/M phase at the beginning of TPA treatment finally expressed low levels of vimentin. On the contrary, cells located in S phase at TPA exposure showed high vimentin levels after treatment. The results presented here show that, with the flow cytometric BrdU/Hoechst quenching technique, one can correlate time-dependent protein expression at the single cell level in asynchronously grown cultures not only with the actual cell cycle state, but also with the history of cell replication. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Differentiation leads to the cessation of cellular proliferation, but little is known about the molecular mechanisms of growth arrest. We compared the effect of two differentiation inducers, 12-o-tetradecanoyl 13-acetate (TPA) and dimethyl sulfoxide (DMSO) on both the cell-cycle and the modulation of G2-related genes in synchronized HL60 cells. TPA treatment of HL60 cells resulted in G1 arrest within 24 h. In contrast, the cell cycling of DMSO-treated cells was initially accelerated and they progressed to the second cycle before accumulating in the G1 phase. Expression of cyclin B, cdc25, wee1 and cdc2 was studied during cell cycle arrest by Northern blot hybridization. Expression of cyclin B, cdc25 and cdc2 fluctuated in association with cell cycle progression towards the G2/M phase, while wee1 expression remained constant in untreated cells. These four genes were highly expressed in TPA-treated cells for the first 12 h, but drastic down-regulation was seen at 18 h and expression became undetectable after 24 h. In contrast, no remarked changes of gene expression were seen in DMSO-treated cells. These findings suggest that cell cycle progression along with the initial process of differentiation in response to TPA differs from the response to DMSO and that the down-regulation of cdc2 expression by TPA-treated HL60 cells contributes to endorsement of G1 arrest.  相似文献   

5.
Terminal cell differentiation usually results in an irreversible arrest in the G1 phase of the cell cycle and loss of cell renewal ability. Human promyelocytic leukemia HL-60 cells induced with 12-o-tetradecanoylphorbol-13-acetate (TPA) differentiate into monocytes/macrophages and accumulate in G1. We determined the effect of TPA on the growth kinetics of a human leukemia cell line (KOPM-28), which developed several of the characteristics of megakaryocytes in response to TPA, such as the surface antigen complex IIb/IIIa, platelet peroxidase and polyploidy. Cell growth was immediately and completely inhibited by TPA. Flow cytometric analysis of cellular DNA content revealed a gradual decrease in cells in G1 and an accumulation of cells in G2. These data suggest that TPA prolonged G1 and rapidly arrested the cells in G2. Synchronized cells were utilized to further analyze the rapid G2 arrest. Cells arrested with aphidicolin at the G1/S interphase were released, and the effects of TPA (added at different intervals) on cell cycle progression were examined 14 h after release. The results showed that TPA added at the end of the S phase, as well as at the G1/S interphase incompletely but distinctly arrested cells in G2. Moreover, G2 arrest was observed when TPA was added to cells released from a colcemid-induced G2/M block, suggesting that cells already in G2 were inhibited by TPA from moving through M to G1. Since some cells became multi-nucleated in the course of incubation with TPA, this G2 accumulation may have resulted at least in part from a prolongation of the phase or a transient G2 block. These changes in cell cycle progression induced by TPA may be characteristic of and/or related to megakaryocytic differentiation of hemopoietic precursor cells.  相似文献   

6.
目的研究转染细胞周期依赖性蛋白激酶1(cyclin.dependent kinase1,CDK1)siRNA、以及转染后进行凋亡刺激对细胞周期和凋亡的影响,探讨CDK1在细胞凋亡中的确切作用,揭示细胞周期与细胞凋亡协调的分子机制。方法以人宫颈癌细胞株HeLa细胞为研究对象,脂质体转染CDK1siRNA,转染后48h加紫杉醇(Tax01)(20μg/m1)刺激凋亡,Western印迹检测CDK1和抗凋亡蛋白BCL2表达,AnnexinV/PI法检测细胞的凋亡,流式细胞仪分析DNA含量检测细胞周期。结果转染CDK1 siRNA后,CDK1蛋白的表达下降,细胞周期G2/M期比例增加,细胞凋亡率与对照相比没有明显升高。只加Taxol刺激12h后细胞凋亡率增加并伴有S期和G2/M期比例增加。转染CDKlsiRNA后再用Taxol刺激,其细胞凋亡率没有明显改变,G2/M期阻滞效应也没有叠加。BCL2蛋白只在加Taxol刺激组表达下降,与CDK1表达减少没有相关性。结论siRNA沉默导致的CDK1表达降低只导致细胞周期G2/M期阻滞,没有引起细胞凋亡;CDK1的表达降低对紫杉醇所诱导的细胞周期阻滞和细胞凋亡效应没有明显影响。  相似文献   

7.
8.
Among the early events of induced differentiation of murine erythroleukemia cells that we studied was the variations of cell distribution in the cell cycle as a function of the time of induction. Flow-cytofluorimetry measurements of DNA content and BrdU incorporation allowed for a precise determination of the variations of the cell cycle parameters. Cells underwent a transient arrest in both G1 and G2 + M between 6 to 16 h of induction. The progression of the cells through S phase seems not to be affected during this period. After this time cells escaped from G1 and reentered the S phase. We described previously [S. Khochbin et al. (1988) J. Mol. Biol. 200, 55-64], that p53 decreased continuously during the induction of MELC and remained at a steady-state level after 18 to 20 h of induction. In order to look for a possible redistribution of the protein along the cell cycle during the induction process, we measured the accumulation of the protein along the cell cycle. In noninduced cells there were four steps in the accumulation of the protein throughout the cell cycle: the amount of p53 was constant during G1 and it increased as cells progressed through S phase, which is characterized by an increased accumulation at the G1/S transition and a more moderate accumulation during progression through the rest of the S phase. A constant level in G2/M, approximately twice that obtained in G1, was achieved. There was no change in this distribution that correlated with the various modifications of the cell cycle in induced cells. It seems then, that p53 is associated neither with the progression of the cells in the S phase nor with the resumption of the DNA synthesis after the G1 block.  相似文献   

9.
刘佳  杨晓彤  杨庆尧 《生物磁学》2011,(20):3826-3829
目的:探究云芝糖)Ik(PSP)对人急性淋巴母细胞白血病Molt-4细胞周期的影响。方法:采用流式细胞术BrdU/DNA双染法获得各时相细胞分布状况和细胞周期的动力学参数。结果:0.1mg/mlPSP处理12h后,G2/M期细胞百分比由对照组的11.09%减少至3.69%。DNA合成时间由12.10h延长至108.40h。24h处理组中,S期细胞百分比由对照组的43.29%增加至67.26%,而G0/G1期和G2/M期细胞百分比均减少,G0/G1期细胞百分比由对照组的37.47%减少至27.43%,G2/M期细胞百分比由对照组的19.24%降低至5.31%。DNA合成时间更是由11.95h延长至114.52h。结论:PSP对人急性淋巴母细胞白血病Molt-4细胞周期的阻滞作用在于S期.该作用与DNA合成抑制有关。  相似文献   

10.
Cell cycle analysis typically relies on fixed time-point measurements of cells in particular phases of the cell cycle. The cell cycle, however, is a dynamic process whose subtle shifts are lost by fixed time-point methods. Live-cell fluorescent biosensors and time-lapse microscopy allows the collection of temporal information about real time cell cycle progression and arrest. Using two genetically-encoded biosensors, we measured the precision of the G1, S, G2, and M cell cycle phase durations in different cell types and identified a bimodal G1 phase duration in a fibroblast cell line that is not present in the other cell types. Using a cell line model for neuronal differentiation, we demonstrated that NGF-induced neurite extension occurs independently of NGF-induced cell cycle G1 phase arrest. Thus, we have begun to use cell cycle fluorescent biosensors to examine the proliferation of cell populations at the resolution of individual cells and neuronal differentiation as a dynamic process of parallel cell cycle arrest and neurite outgrowth.  相似文献   

11.
The effect of the tumor promoter okadaic acid on cell cycle progression and on vimentin expression in MPC-11 mouse plasmacytoma cells was compared with that of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Cell cycle progression of asynchronously grown MPC-11 cells was inhibited by both agents, but, in contrast to the G1 phase arrest caused by TPA, okadaic acid gave rise to G2/M phase and S phase arrest. This effect of okadaic acid was delayed significantly compared to the TPA-caused arrest. Furthermore, okadaic acid was able to induce vimentin expression to an extent comparable to the TPA response. However, vimentin expression was markedly delayed in okadaic acid-treated relative to TPA-treated cells. Another protein phosphatase inhibitor, calyculin A, also induced cell cycle changes and vimentin expression at concentrations at or above 1 × 10?9M. Based on these observations, we suggest an involvement of protein phosphatase 1 (possibly also phosphatase 2A and/or other phosphatases) in both the G2/M cell cycle block and the induction of vimentin expression in MPC-11 cells by okadaic acid. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Proliferation of the human monocytic leukemia cell line JOSK-I is inhibited by transforming growth factor-beta (TGF-beta). Growth inhibition by TGF-beta was not due to either a toxic effect or to induction of differentiation. TGF-beta induced a cell cycle arrest at late G1 phase and was not found to be inhibitory to JOSK-I cells in S phase or G2/M. This G1 cell cycle arrest was associated with an accumulation of the unphosphorylated form of the retinoblastoma susceptibility gene product (Rb) in good correlation with inhibition of DNA synthesis. In contrast to the effects of TGF-beta, two other agents which induced a G1 arrest of JOSK-I cells had a different effect on Rb. Aphidicolin blocked cells at G1/S but could not reduce Rb phosphorylation as great as that seen with TGF-beta. 12-O-Tetradecanoylphorbol-13-acetate, an inducer of differentiation, did reduce Rb phosphorylation, but not until 72 h, when differentiation had already occurred. The identities of the Rb kinases are unknown, but recent evidence suggests that the cdc2 gene product could participate in Rb phosphorylation. Although cdc2 mRNA and total protein levels were not affected, TGF-beta inhibited the rate of translation and kinase activity of cdc2 in JOSK-I cells. These results suggest that growth inhibition of hematopoietic cells by TGF-beta is linked to suppression of Rb phosphorylation to retain Rb in an unphosphorylated, growth-inhibitory state. The suppression of Rb phosphorylation is suggested to be mediated through inhibition of cdc2 kinase activity by TGF-beta.  相似文献   

13.
14.
Activation of protein kinase C (PKC) inhibits cell cycle progression at the G1/S and G2/M transitions. We found that phorbol 12-myristate 13-acetate (PMA) induced upregulation of p21, not only in MCF-7 cells arrested in the G1 phase as previously shown, but also in cells delayed in the G2 phase. This increase in p21 in cells accumulated in the G1 and G2/M phases of the cell cycle after PMA treatment was inhibited by the PKC inhibitor GF109203X. This indicates that PKC activity is required for PMA-induced p21 upregulation and cell cycle arrest in the G1 and G2/M phases of the cell cycle. To further assess the role of p21 in the PKC-induced G2/M cell cycle arrest independently of its G1 arrest, we used aphidicolin-synchronised MCF-7 cells. Our results show that, in parallel with the inhibition of cdc2 activity, PMA addition enhanced the associations between p21 and either cyclin B or cdc2. Furthermore, we found that after PMA treatment p21 was able to associate with the active Tyr-15 dephosphorylated form of cdc2, but this complex was devoid of kinase activity indicating that p21 may play a role in inhibition of cdc2 induced by PMA. Taken together, these observations provide evidence that p21 is involved in integrating the PKC signaling pathway to the cell cycle machinery at the G2/M cell cycle checkpoint.  相似文献   

15.
Proliferation of human B- and T-lymphoid cell lines including Raji and Akata cells was found to be arrested at the G1 stage in the cell cycle by dimethyl sulfoxide (DMSO). The G1 arrest by DMSO occurred gradually and was completed within 96 h after addition of 1.5% DMSO concomitantly with a decrease in growth rate. Progression of G1-phase cells containing a larger amount of RNA into S-phase began 9-12 h after removal of DMSO. At 24 h, the DNA pattern of the cell cycle was similar to that of nontreated log-phase cells. The expression of six differentiation markers on the lymphoid cells was not appreciably changed by treatment with DMSO. On the other hand, the expression of transferrin receptor (one of the growth-related markers) on G1-phase cells 96 h after addition of DMSO was decreased to one-fourth that on log-phase cells and was completely restored 24 h after removal of DMSO. These results indicate that DMSO, known as an inducer of differentiation in several myeloid cell lines, acts as an agent inducing G1 arrest in the cell cycle of the lymphoid cells.  相似文献   

16.
The putative role of Ca2+ and calmodulin in regulating cell proliferation and differentiation was tested in HL-60 human promyelocytic leukemia cells. The dependence of retinoic acid (RA)-induced terminal myeloid differentiation of HL-60 promyelocytic leukemia cells on calmodulin levels and calcium ion flux was ascertained. RA-treated and untreated control cells were stained for cellular DNA with a Hoechst dye. Populations of G1/0, S and G2+M phase cells were isolated by fluorescence activated cell sorting (FACS). Cytosolic calmodulin levels were then measured as a function of cell cycle phase for RA-treated and untreated cells using a radioimmunoassay. RA-treated cells were measured at early times, corresponding to the precommitment state, and late times, when significant cell differentiation had occurred. Cellular calmodulin levels increased with progression through the cell cycle. In contrast, no difference in calmodulin levels was observed between RA-untreated or -treated cells in the same cell cycle phases at early or late times. RA-induced HL-60 terminal myeloid differentiation was thus apparently not regulated by cellular cytosolic calmodulin levels. These conclusions were supported by the effects of calmodulin antagonists and calcium flux inhibitors. The calmodulin antagonists trifluoperazine and compound 48/80 both retarded cell growth in a concentration-dependent manner. But at concentrations where cellular effect was evidenced by slight growth inhibition, neither antagonist inhibited RA-induced cell differentiation or G1/0 growth arrest. The same was true of the gated calcium channel inhibitors, verapamil and nitrendipene, and the passive calcium flux inhibitor, CoC12. RA-induced HL-60 cell differentiation and arrest in G0 was thus apparently not strongly dependent on cellular calmodulin levels or calcium flux. This is in strong contrast to murine erythroleukemia cells. The results argue against a central regulatory role for calmodulin or calcium flux in control of HL-60 growth arrest or differentiation.  相似文献   

17.
The effects of cell cycle on recombinant protein production and infection yield in the baculovirus-insect cell expression system (BES) were investigated. When, at any cell cycle phase, the host cell was infected by baculovirus, the cell cycle was finally arrested at the S or G(2)/M phase with 4n DNA. In the case of G(1) or S phase-infection, cell cycle of virus-infected cells began to be arrested at S phase from 8 h post-infection or at G(2)/M phase from 4 h post-infection, respectively; while, in the case of M phase-infection, cell cycle was arrested at S phase after 12 h post-infection. When the host cell was infected at the G(1) phase, average intracellular GFPuv fluorescence intensity was 1.3-fold higher than that at G(2)/M phase at 24 h post-infection. The GFPuv expression corresponded to the profile of the G(1) cell cycle in the BES. Infection yield was measured by detection of intracellular DNA binding protein using immunohistochemical method within 7 h post-infection. The infection yield at G(1) or S phase-infection was 1.5-1.8-fold higher than that at G(2)/M phase-infection.  相似文献   

18.
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability.  相似文献   

19.
Aggressive tumor developing human TUR myeloid leukemia cells continued cell cycle progression in the presence of the differentiation-inducing phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Similar results were obtained after stable transfection of TUR cells with the pTracer control vector (pTracer TUR cells). In contrast, TUR transfectants containing a constitutively active poly(ADP-ribose) polymerase-1 (PARP-1) gene fragment in antisense orientation within the pTracer vector (asPARP TUR cells) demonstrated increasing cell attachment and differentiation after TPA treatment. Moreover, asPARP TUR cells ceased to divide upon TPA stimulation. Cell cycle analysis revealed a predominant G0/G1 arrest and a partial G2/M arrest in TPA-treated asPARP TUR cells, whereas little if any population was detectable in S phase. Microarray gene expression analysis exhibited a significant down-regulation of cell cycle genes in phorbol ester-stimulated asPARP TUR and markedly elevated levels of differentiation-associated factors in contrast to TPA-incubated wild-type TUR cells. Whereas PARP-1 can associate with the 20S proteasome in leukemia cells, a significant reduction of this proteolytic activity was observed in asPARP TUR cells. Conversely, protein levels of manganese superoxide dismutase and the matrix metalloproteinases MMP-1 and MMP-9 were progressively increased in TPA-treated asPARP TUR cells, respectively. These findings underscore an important function of PARP-1 in human leukemia cells to connect cell cycle progression and control of differentiation.  相似文献   

20.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in tumor cells over normal cells. To study the relationship between cell cycle progression and TRAIL-induced apoptosis, SW480 colon cancer and H460 lung cancer cell lines were examined for their sensitivity to TRAIL after arrest in different cell cycle phases. Cells were synchronized in G0/G1, S, and G2/M phase by serum starvation, aphidicolin, or nocodazole treatment, respectively. We found that arrest of cells in G0/G1 phase confers significantly higher susceptibility to TRAIL-induced apoptosis as compared to cells in late G1, S, or G2/M phase. To determine if cell cycle phase could be harnessed for therapeutic gain in the presence of TRAIL, we used the HMG-CoA reductase inhibitor, Simvastatin and lovastatin, to enrich a cancer cell population in G0/G1. Both simvastatin and lovastatin significantly augmented TRAIL-induced apoptosis in tumor cells, but not in normal keratinocytes. The results indicate that TRAIL, in combination with a HMG-CoA reductase inhibitor, may have therapeutic potential in the treatment of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号