首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation in fungi.   总被引:40,自引:0,他引:40       下载免费PDF全文
Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.  相似文献   

2.
Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.  相似文献   

3.
Transformation of Xenorhabdus nematophilus.   总被引:3,自引:1,他引:2       下载免费PDF全文
The ability of Xenorhabdus nematophilus 19061/1 to be transformed by pHK17 plasmid DNA was studied and optimized. A number of factors, including culture conditions, stage of growth, transformation buffer pH, cation type and concentration required for the production of competency, washing, heat shock conditions, and cell-DNA ratio, were found to affect transformation significantly. On the basis of these observations, a procedure for the routine transformation of X. nematophilus 19061/1 at frequencies of 1 X 10(5) to 10 X 10(5) transformants per microgram of pHK17 plasmid DNA was developed. Maximum transformation was obtained when cells which had reached the mid- to late-logarithmic growth phase (total counts, 2.5 X 10(8) to 5 X 10(8) cells per ml) within 4.5 to 5.5 h were washed once in cold transformation buffer before they were suspended in the same buffer to 0.1 of their original volume. The highest transformation was obtained when dimethyl sulfoxide was added in two steps to the cells immediately before the DNA was added, after which the cell-DNA mixtures were incubated for 30 min on ice before they were given a 3-min heat shock at 37 degrees C. Following these treatments, the transformed cells were incubated in L broth-60 mM CaCl2 for 1 h before they were plated onto selective medium. We also were able to transform X. nematophilus 19061/1 with plasmid pBR325, and we transformed other species of Xenorhabdus with several common plasmids.  相似文献   

4.
5.
6.
Transformation of encapsulated Streptococcus pneumoniae.   总被引:16,自引:4,他引:12       下载免费PDF全文
We describe the high-efficiency transformation of several virulent, encapsulated isolates of Streptococcus pneumoniae. Transformation was effected by the induction of competence with competence factor and was apparently the result both of inducing noncompetent recipients and overcoming the inhibition imposed by the capsule.  相似文献   

7.
Transformation effector and suppressor genes.   总被引:2,自引:0,他引:2  
Much has been learned about the molecular basis of cancer from the study of the dominantly acting viral and cellular oncogenes and their normal progenitors, the proto-oncogenes. More recent studies have resulted in the isolation and characterization of several genes prototypic of a second class of cancer genes. Whereas oncogenes act to promote the growth of cells, members of this latter class of genes act to inhibit cellular growth and are believed to contribute to the tumorigenic phenotype only when their activities are absent. This new class of cancer genes is referred to by a number of different names including; anti-oncogenes, recessive oncogenes, growth suppressor genes, tumor suppressor genes and emerogenes. Although only a few of these cancer genes have been identified, to date, it is likely that many additional genes of this class await identification. A third class of genes, necessary for the development of the cancer phenotype, is comprised of the transformation effector genes. These are normal cellular genes that encode proteins that cooperate with or activate oncogene functions and thereby induce the development of the neoplastic phenotype. The inactivation of transformation effector functions would therefore inhibit the ability of certain dominantly acting oncogenes to transform cells. The approaches outlined here describe functional assays for the isolation and molecular characterization of transformation effector and suppressor genes.  相似文献   

8.
Transformation by rat-derived oncogenic retroviruses.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

9.
The plasmid transfer by transformation of Escherichia coli in 12 foods was investigated under conditions commonly found in processing and storage of food. Transformation occurred in all foods with frequencies of at least 10(-8) when a simplified standard transformation protocol with non-growing cells was applied. Higher rates (ca. 10(-7)) were found in milk, soy drink, tomato and orange juice. Furthermore, E. coli became transformed at temperatures below 5 degrees C, i.e. under conditions highly relevant in storage of perishable foods. In soy drink this condition resulted in frequencies which were even higher than those determined after application of a temperature shift to 37 degrees C. The transformation of cells growing in milk and carrot juice at a constantly kept temperature of 37 degrees C provides evidence for the potential of E. coli to become transformed naturally. With purified DNA frequencies were determined in these substrates of ca. 2.5 x 10(-7) and 2.5 x 10(-8), respectively. Similar frequencies were also obtained in milk containing the crude nucleic acids of homogenised cell suspensions of E. coli (pUC18). Moreover, the release of plasmid DNA from E. coli during food processing and the subsequent uptake of this DNA by growing E. coli cells was shown to take place after homogenisation in milk indicating a horizontal plasmid transfer by transformation of E. coli.  相似文献   

10.
Transformation of Saccharomyces cerevisiae by electroporation.   总被引:5,自引:1,他引:4       下载免费PDF全文
A method for introducing heterologous DNA into Saccharomyces cerevisiae rapidly and efficiently by electroporation was developed. Transformant colonies appeared somewhat sooner than by the LiCl or spheroplast transformation method, and the time spent in manipulation was much less than for these two methods. The pores in the cell membrane formed by the high voltage of electroporation were resealed within 6 to 7 min after electroporation. At a capacitance of 25 microF, the optimum voltage was 2.0 to 2.25 kV/cm. Log-phase cells concentrated to 10 to 20 units at an optical density of 600 nm in 200 microliters of fresh rich medium and electroporated at 2.25 kV/cm in the presence of 0.1 microgram of supercoiled plasmid DNA will yield 1,000 to 4,500 colonies per microgram of DNA.  相似文献   

11.
Streptomyces peucetius and Streptomyces strain C5, producers or anthracycline antibiotics, were converted to protoplasts from vegetatively growing mycelia. Conditions are described for maximal protoplast formation (greater than 99%) and for regeneration frequencies of up to 13%. Streptomycete plasmids pIJ61, pIJ702, and pIJ922, from the replicons SLP1, pIJ101, and SCP2, respectively, were isolated from Streptomyces lividans 66 and successfully introduced into S. peucetius and Streptomyces strain C5 by polyethylene glycol-mediated protoplast transformation. Frequencies of up to 10(6) transformations X microgram of plasmid DNA-1 were achieved by these procedures. Analyses showed that the two anthracycline-producing strains can stably harbor the plasmids without deletion of plasmid sequences or loss of the plasmids for several transfers through selective media. Fragments of DNA from S. peucetius ligated into pIJ702 and introduced into Streptomyces strain C5 were stable after several transfers through selective media. Both anthracycline producers also were sensitive to infection and transfection by actinophages KC401 and KC515, clear plaque derivatives of bacteriophage phi C31. Optimal conditions were determined for the transfection of S. peucetius and Streptomyces strain C5 protoplasts with phi C31 KC401 and KC515 DNA with liposome-assisted, polyethylene glycol-mediated protoplast transfection.  相似文献   

12.
13.
14.
Summary The microbiological transformation of progesterone to androsta-1,4-diene-3,17-dione was investigated. A comparison of various species ofFusaria under identical conditions showed a characteristic difference in the course of the transformation which allowed the division of the androstadienedione producingFusaria into two groups. Beside of the already knownFusaria several new androstadienedione producing ones were discovered.Presented in part at the 1st Yugoslav Microbiological Congress, Belgrade, September, 1968.  相似文献   

15.
16.
17.
Glycryrrhizic acid was metabolized to 3-oxo-18β-glycyrrhetinic acid via 18β-glycyrrhetinic acid by Aspergillus niger, A. oryzae, A. sojae, and A. tamarii. Two methyl esters were derived from these two metabolites and identified by their 13C-NMR spectra and MS data.  相似文献   

18.
Transformation of bile acids by Clostridium perfringens.   总被引:4,自引:4,他引:0       下载免费PDF全文
S Hirano  N Masuda  H Oda    H Mukai 《Applied microbiology》1981,42(3):394-399
Thirty-five strains of Clostridium perfringens were examined for their ability to transform bile acids, both in growing cultures and by washed whole cells. All of the strains oxidized the 3 alpha-hydroxy group to an oxo group, and all except three converted the same alpha-hydroxy group into a beta-configuration. The oxidative 3 alpha-dehydrogenation was barely detectable under anaerobic cultural conditions but was clearly demonstrated in an aerated system using washed whole cells, with a pH optimum between 7.0 and 9.0. The epimerizing reaction amounting to 10 to 20% conversion was observed in anaerobic cultures and also with resting cells, irrespective of oxygen supply. Both reactions were carried out with seven conventional 3 alpha-hydroxy bile acids, thus producing a series of 3-oxo and 3 beta-hydroxy derivatives that could be examined for gas-liquid chromatographic and mass spectrometric behavior. No evidence for the occurrence of 7 alpha- and 12 alpha-hydroxysteroid dehydrogenase activities among the test strains was found. A highly potent deconjugating hydrolase was elaborated by all of the strains.  相似文献   

19.
Purified DNA from wild-type Chinese ovary (CHO) cells has been used to transform three hypoxanthine phosphoribosyltransferase (HPRT) deficient murine cell mutants to the enzyme positive state. Transformants appeared at an overall frequency of 5 x 10(-8) colonies/treated cell and expressed CHO HPRT activity as determined by electrophoresis. One gene recipient, B21, was a newly isolated mutant of LMTK- deficient in both HPRT and thymidine kinase (TK) activities. Transformation of B21 to HPRT+ occurred at 1/5 the frequency of transformation to TK+; the latter was, in turn, an order of magnitude lower than that found in the parental LMTK- cells, 3 x 10(-6). Thus both clonal and marker-specific factors play a role in determining transformability. The specific activity of HPRT in transformant extracts ranged from 0.5 to 5 times the CHO level. The rate of loss of the transformant HPRT+ phenotype, as measured by fluctuation analysis, was 10(-4)/cell/generation. While this value indicates stability compared to many gene transferents, it is much greater than the spontaneous mutation rate at the indigenous locus. The ability to transfer the gene for HPRT into cultured mammalian cells may prove useful for mutational and genetic mapping studies in this well-studied system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号