首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In a comparative experiment the effect of cortisol and growth hormone (GH) on the hypo-osmoregulatory ability of a landlocked and an anadromous strain of Arctic charr (Salvelinus alpinus) was investigated. Cortisol and GH were implanted either alone or in combination, and the fish were exposed to a 24 h seawater challenge test (SWT) on days 14 and 28 after implantation. Hypo-osmoregulatory ability, measured as plasma osmolality and chloride concentration after the SWTs, was better in the anadromous than in the landlocked strain, irrespective of treatment. However, cortisol provided a strong stimulation of hypo-osmoregualtory ability in both strains, and this stimulation seemed to be potentiated by GH in an additive manner. Improved hypo-osmoregulatory ability in GH + cortisol treated anadromous Arctic charr was accompanied by increased gill Na+, K+-ATPase activity and Na+–K+–2Cl cotransporter protein abundance, but no changes in gill Na+,K+-ATPase α1a and α1b mRNA levels. For landlocked charr the improved hypo-osmoregulatory ability in GH +cortisol treated fish was accompanied only with an increase in gill Na+–K+–2Cl cotransporter protein abundance. Hormone treatment caused an improvement of hypo-osmoregulatory ability that was of approximately the same magnitude in the landlocked as in the anadromous Arctic charr. This suggests that the lack of spontaneous development of hypo-osmoregulatory ability often seen in landlocked populations of Arctic charr may depend, at least partly, on a lack of the hormonal activation seen in anadromous populations.  相似文献   

2.
The kidney is an organ playing an important role in ion regulation in both freshwater (FW) and seawater (SW) fish. The mechanisms of ion regulation in the fish kidney are less well studied than that of their gills, especially at the level of transporter proteins. We have found striking differences in the pattern of Na+/K+/2Cl- cotransporter (NKCC) expression between species. In the killifish kidney, NKCC is apically localized in the distal and collecting tubules and basolaterally localized in the proximal tubules. However, in the SW killifish gill, NKCC is basolaterally co-localized with Na+/K+-ATPase, whereas in FW, NKCC immunoreactivity is primarily apical, although still colocalized within the same mitochondria-rich cell with basolateral Na+/K+-ATPase. Rainbow trout kidney has NKCC only in the apical membrane of the distal and collecting tubules in both environments, with no signal being detected in the proximal tubule. On the other hand, in the trout gill, NKCC is found basolaterally in both FW and SW environments. An important observation is that, in the gills of rainbow trout, the trailing edge of the filament possesses mostly Na+/K+-ATPase-positive but NKCC-negative mitochondria-rich cells, whereas in the region between and at the roots of the gill lamellae, most mitochondria-rich cells exhibit both Na+/K+-ATPase- and NKCC-positive immunoreactivity. These results suggest that the differential localization of transporters between the two species represents differences in function between these two euryhaline fishes with different life histories and strategies. Funding for this research was provided by NSERC Discovery Grants to G.G.G. and W.S.M., an Alberta Ingenuity Fund PDF, and a fellowship from the NSERC Research Capacity Development Grant to F.K.  相似文献   

3.
Brook charr, Salvelinus fontinalis, often display alternate life history styles in coastal areas. In the Laval River, some brook charr remain freshwater residents, while others undergo seasonal migrations between freshwater and saltwater environments. In the present paper, we examined physiological (electrolyte concentrations, gill Na+, K+-ATPase activity, and thyroid hormone levels) as well as genetic differences (neutral genetic markers) between anadromous and river-resident fish from the Laval River. We also examined how artificial rearing conditions affected seasonal variations in the osmoregulatory physiology of a domestic strain derived from wild anadromous fish. Sympatric anadromous and resident forms of brook charr of the Laval River exhibited differences in gill Na+, K+-ATPase activity, plasma thyroxine (T4), and triidothyronine (T3) concentrations. In domestic anadromous charr, rearing conditions during development had no negative impact on osmoregulatory ability or on gill Na+, K+-ATPase activity. These results argued for an important hereditary component of gill Na+, K+-ATPase activity. However, the spring increase in T4 was present only in wild fish. Significant differences observed at microsatellite loci further suggested that at least some level of reproductive isolation may have occurred between anadromous and resident charr in the Laval River.  相似文献   

4.
We investigated the effect of salinity on the relationship between Na+-K+-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na+-K+-ATPase activity, especially in Na+-K+-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na+-K+-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na+-K+-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na+-K+-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na+-K+-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

5.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

6.
  • 1.1. Freshwater nonanadromous rainbow trout, Salmo gairdneri, were injected three times a week with either saline, 10μg cortisol/g, 1.0μg thyroxine/g or 10μg cortisol/g + 1.0μg thyroxine/g during a period of 28 days (12 injections). A separate group was derived as a subgroup from the thyroxine group on day 14 and received Cortisol + thyroxine from day 14 until day 28 (six injections).
  • 2.2. Gill chloride cell number and Na+/K+-ATPase activity increased by cortisol treatment, the changes being significant on days 7 and 14, respectively.
  • 3.3. Thyroxine treatment did not affect gill Na+/K+-ATPase activity or chloride cell number directly. Neither did it modify the stimulatory effect of cortisol on these parameters.
  • 4.4. Muscle water decreased in cortisol-treated fish and increased in thyroxine-treated fish, while no changes were observed in the combined hormone groups.
  • 5.5. No changes were observed in plasma chloride in any group during the experiment.
  • 6.6. The results demonstrate a putative role of cortisol in stimulating hypo-osmoregulatory mechanisms and suggest that thyroxine is without a direct or a supportive effect for cortisol action.
  相似文献   

7.
The influence of acclimation to different environmental salinities (low salinity water, LSW; seawater, SW; and hyper saline water, HSW) and feeding conditions (fed and food deprived) for 14 days was assessed on osmoregulation and energy metabolism of several tissues of gilthead sea bream Sparus auratus. Fish were randomly assigned to one of six treatments: fed fish in LSW, SW, and HSW, and food-deprived fish in LSW, SW, and HSW. After 14 days, plasma, liver, gills, kidney and brain were taken for the assessment of plasma osmolality, plasma cortisol, metabolites and the activity of several enzymes involved in energy metabolism. Food deprivation abolished or attenuated the increase in gill Na+,K+-ATPase activity observed in LSW- and HSW-acclimated fish, respectively. In addition, a linear relationship between renal Na+,K+-ATPase activity and environmental salinity was observed after food deprivation, but values decreased with respect to fed fish. Food-deprived fish acclimated to extreme salinities increased production of glucose through hepatic gluconeogenesis, and the glucose produced was apparently exported to other tissues and served to sustain plasma glucose levels. Salinity acclimation to extreme salinities enhanced activity of osmoregulatory organs, which is probably sustained by higher glucose use in fed fish but by increased use of other fuels, such as lactate and amino acids in food-deprived fish.  相似文献   

8.
We assessed the effects of dietary fatty acid composition on sodium–potassium ATPase (Na+/K+-ATPase) activity and isoform expression in the gills of juvenile fall chinook salmon, Oncorhynchus tshawytscha by supplementing diets with either anchovy oil (AO) or AO blended with canola oil (CO) so that CO comprised 0% (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO), or 54% (54CO) of the measured dietary lipid content. The effects of diet were assessed in freshwater (FW) following 104 days of diet manipulation, in response to 24-h seawater (SW) transfer at this time, and following an additional 35 days of SW acclimation. Gill Na+/K+-ATPase activity was not significantly affected by diet at any sampling time, and there were no consistent effects of diet on the expression of the Na+/K+-ATPase α1a isoform. As dietary CO increased, Na+/K+-ATPase α1b mRNA decreased in fish held in FW, with the 43CO and 54CO diet groups having significantly lower levels than fish fed the 0CO and 11CO diets. Twenty-four-hour SW challenge did not affect the expression of the Na+/K+-ATPase α1a isoform in any diet group, but this isoform was down-regulated in all diet groups following 35 days of SW acclimation. Na+/K+-ATPase α1b expression levels increased in response to 24-h SW transfer and SW acclimation only in fish fed the 54CO diet. The effects of the two extreme diets (0CO and 54CO) were also assessed at various time points during 104 days of rearing in FW. Na+/K+-ATPase α1b mRNA levels were greater in fish fed diet 0CO versus those fed diet 54CO at all times during the FW culture period. These data demonstrate that dietary fatty acid composition can influence the gill Na+/K+-ATPase isoform physiology of juvenile fall-run chinook salmon prior to SW transfer.  相似文献   

9.
Parr–smolt transformation and growth were studied in captive offspring of anadromous Arctic charr (Salvelinus alpinus) from the Hals watercourse in northern Norway (70°N), held either at a natural temperature (< 1 °C until May) or at a temperature elevated to 6 °C in late March. In mid-May, 5 weeks after the increase in photoperiod from 8:16 h light:dark to continuous light, gill Na+, K+-ATPase activity started to increase in both temperature groups, concurrent with the final development of full seawater tolerance. Temperature had no effect on the development of gill Na+, K+-ATPase activity, or on hypoosmoregulatory ability. The fish in both treatments resumed growth in mid-May, but from then on growth was faster in the elevated than in the ambient temperature group. In the former group, fish mass doubled in 6 weeks (from 65 to 137 g), and growth ceased at the time when the fish were about to complete their parr–smolt transformation. These findings show that an early vernal temperature increase advances the seasonal growth cycle, but not the parr–smolt transformation, in anadromous Arctic charr.  相似文献   

10.
Previous work has shown that cholesterol levels are modulated in plasma membranes from some but not all tissues of poikilotherms over the course of temperature change. To gain a better understanding of tissue and membrane domain-specific cholesterol function during thermal adaptation we examined effects of cholesterol on membrane physical properties and (Na+,K+)-ATPase in native and cholesterol-enriched basolateral membranes from kidney and intestine of thermally acclimated trout (Oncorhynchus mykiss). Membrane order (as indicated by fluorescence depolarization studies) is increased, whereas its thermal sensitivity is decreased by elevated cholesterol levels in mem branes with relatively low endogenous amounts of cholesterol (intestinal membranes and renal membranes from cold-acclimated fish). Thermal sensitivities of membrane order in kidney are 1.5-fold higher in native compared with cholesterol-enriched basolateral membranes. For renal plasma membranes, (Na+,K+)- ATPase activity is lowest near the transition between native and surpraphysiological cholesterol levels. Endogenous cholesterol levels (relative to phospholipid contents) in intestinal basolateral membranes from cold-acclimated fish vary more than 1.5-fold; membranes with cholesterol/phospholipid molar ratios of 0.3 have activities of (Na+,K+)-ATPase that are twofold lower than native membranes having a ratio of 0.2. These results suggests that maintenance of cholesterol levels in intestinal basolateral membranes during thermal acclimation may ensure sufficient activity of (Na+,K+)-ATPase. Membrane function in kidney, with its high native cholesterol content, is less likely to be affected by temperature change. Accepted: 21 January 1997  相似文献   

11.
The objective of this study was to elucidate the role of the intestine from juveniles of the marble goby, Oxyeleotris marmorata, during seawater (SW) exposure. It has been reported elsewhere that SW-exposed juvenile O. marmorata exhibits hypoosmotic and hypoionic regulation, with the induction of branchial Na+/K+-ATPase (NKA), Na+:K+:2Cl cotransporter (NKCC), and cystic fibrosis transmembrane receptor-like chloride channels. Here, we report that SW exposure also led to significant increases in the activity and protein abundance of NKA in, and probably an increase in Na+ uptake through, its intestine. Additionally, there was an increase in apical NKCC immunoreactivity in the intestinal epithelium, indicating that there could be increased Cl uptake through the intestine. These results suggest that absorption of ions, and hence water, from the intestinal lumen could be an essential part of the osmoregulatory process in juvenile O. marmorata during exposure to SW. Furthermore, there were significant increases in the glutamate content, and the aminating activity and protein abundance of glutamate dehydrogenase (GDH) in the intestine of fish exposed to SW. Since the intestinal glutamine synthetase activity and protein abundance decreased significantly, and the intestinal glutamine content remained unchanged, in the SW-exposed fish, excess glutamate formed via increased GDH activity in the intestine could be channeled to other organs to facilitate the increased synthesis of amino acids. Taken together, our results indicate for the first time that, besides absorbing ions and water during SW exposure, the intestine of juvenile O. marmorata also participated in altered nitrogen metabolism in response to salinity changes.  相似文献   

12.
The fish gill is a multifunctional organ responsible for gas exchange and ionic regulation. It is hypothesized that both morphological and functional differentiation can be found in the gills of the aquatic air-breathing fish, Trichogaster leeri. To test this, we used the air-breathing fish, Trichogaster leeri, to investigate various morphological/functional parameters. First, we evaluated the importance of performing the aquatic surface respiration behavior in T. leeri. A reduced survival rate was observed when fish were kept in the restrained cages in hypoxic conditions. On the gross anatomy of gills, we found evidence of both morphological and functional modification in the first and the second gills and are responsible for ionic regulation. There were large-bore arterioarterial shunts in the fourth gill arch. It is specialized for the transport of oxygenated blood and is less responsive to environmental stress. In addition, the anterior and the posterior gills differed in the Na+, K+-ATPase activity upon ionic stresses. That is, only the Na+, K+-ATPase activity of the anterior two gills was up-regulated significantly in the deionized water. Lastly, we found that the number of mitochondria-rich cells in the first and the second gills increased following ionic stress and no difference was found in the third and the fourth gills following such an exposure. These results supported the hypothesis that there are morphological and functional differences between anterior and posterior gill arches within the air-breathing Trichogaster leeri. In contrast, no significant difference was found among gills in gross anatomy, filament density and Na+, K+-ATPase activity in the non-air-breather, Barbodes schwanenfeldi.  相似文献   

13.
Atlantic salmon juveniles reared at constant temperature (9–10°C) were exposed to four photoperiod treatment and sampled every 2 weeks from January through May. Fish reared under normal photoperiod exhibited eight-and three fold increases in plasma growth hormone and gill Na+, K+-ATPase activity, respectively, between January and April. Fish exposed to abrupt increases in daylength (LD 15:9) in February or March responded with earlier increases in plasma growth hormone and gill Na+, K+-ATPase activity, and earlier decreases in condition factor relative to fish in the normal photoperiod group. Fish maintained under short daylength (LD 9:15) from January to May exhibited delayed and muted increases in plasma growth hormone and gill Na+, K+-ATPase activity. Plasma thyroxine exhibited a 2.5-fold increase from February to late March in the normal photoperiod group, was generally lower in the LD 9:15 group, but exhibited no obvious response to abrupt increases in daylength. There was an increase in plasma 3,5,3-triiodo-l-thyronine with time in all groups (43–80%) but no significant response to photoperiod. Plasma levels of somatostatin-25 were highest in the LD 9:15 group, but there was no detectable response to increased daylength in any of the photoperiod treatments. The results indicate that plasma growth hormone is responsive to increased daylength and may be causally related to subsequent increases in gill Na+, K+-ATPase.Abbreviations ANOVA two-way analysis of variance - BCA bicinchoninic acid - BSA Bovine serum albumin - EDTA ethylene diamine tetraacetic acid - ELISA enzyme-linked immunosorbent assay - EST eastern standard time - GH growth hormone - GLU Glucagen - IgG Immunoglobulin G - INS Insulin - LDN Simulated natural photoperiod - RIA radio immuno assay - RIA radio immuno assay - SEI Sucrose EDTA imidazole - SS-25 somatostatin-25 - SW sea water - T 3 3,5,3 triiodo-l-thyronine - T 4 thyroxine  相似文献   

14.
It is concluded that Ca2+ transport across the basolateral membranes of the ionocytes in killifish skin is mediated for the major part by a Na+/Ca2+-exchange mechanism that is driven by the (transmembrane) Na+ gradient established by Na+/K+-ATPase. The conclusion is based, firstly, on the biochemical evidence for the presence of a Na+/Ca2+-exchanger next to the Ca2+-ATPase in the basolateral membranes of killifish gill cells. Secondly, the transcellular Ca2+ uptake measured in an Ussing chamber setup was 85% and 80% reduced in freshwater (FW) and SW (SW) opercular membranes, respectively, as the Na+ gradient across the basolateral membrane was directly or indirectly (by ouabain) reduced. Thapsigargin or dibutyryl-cAMP/IBMX in SW opercular membranes reduced Ca2+ influx to 46%, comparable to the effects seen in FW membranes [reduction to 56%; Marshall et al. 1995a]. Basal Ca2+ influx across the opercular membrane was 48% lower in membranes from fish adapted to SW than in membranes from fish adaptated to FW. Branchial Na+/K+-ATPase activity was two times higher in SW adapted fish. Accepted: 29 October 1996  相似文献   

15.
This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salar smolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na+, K+‐ATPase (NKA) activity and osmoregulatory performance in full‐strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low‐salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival.  相似文献   

16.
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3 and 2CO3 2−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.  相似文献   

17.
We have assessed the activity of Na+/K+-ATPase, cAMP, free fatty acids (FFA) and metallothionein (MT) in the posterior gills of the brackish water shore crab Carcinus aestuarii during acclimation to 10 ppt dilute seawater (DSW). Following 3–18 days acclimation in DSW specific activity of Na+/K+-ATPase in native gill homogenates and partially purified membrane vesicles was progressively increased, from 1.7- to 3.9-fold. After short-term acclimation of crabs in DSW with added sucrose to make media isosmotic with the haemolymph the specific Na+/K+-ATPase activity in homogenates was not increased, relative to SW enzyme activity. Moreover, hyposmotic conditions led to depletion of cAMP in gills.In partially purified membrane vesicles isolated from posterior gills, fatty acids with compositions 16:0, 18:0, 18:1, 20:4 and 20:5 dominated in both SW- and DSW-acclimated Carcinus. During a year in which the metabolic activity of crabs was increased, the arachidonic/linoleic acids ratio (ARA/LA) for DSW-acclimated crabs was markedly increased relative to that in SW. Increased Na+ K+-ATPase activity under hyposmotic stress may be modulated at least partially by the changed proportion of fatty acids in the purified membranes of posterior gills. Long-term acclimation of shore crabs to DSW resulted in a 2.6-fold increase in cytosolic metallothionein (MT) content in posterior gills over those in SW crabs. Assuming an antioxidant role of MT associated with intracellular zinc partitioning, the observed MT induction in posterior gills may be considered an adaptive response of C. aestuarii to hyposmotic stress.  相似文献   

18.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

19.
Two groups of migrating wild Atlantic salmon (Salmo salar) smolts caught within a 1 week interval in the River Alta, northern Norway, were tagged with acoustic transmitters and measured for gill Na+, K+ -ATPase activity in order to compare their smolt status with timing of sea entry. The first group of smolts had low levels of gill Na+, K+ -ATPase activity and resided in the lower part of the river twice as long as the second group that had high levels of gill Na+, K+ -ATPase activity. This indicates that early migrating smolts may not be completely physiologically adapted for salt water and delay their sea entry, thereby also synchronizing their seaward migration with the later migrating smolts.  相似文献   

20.
We investigated the effect of the exogenous polyamines spermine, spermidine and putrescine on modulation by ATP, K+, Na+, NH4 + and Mg2+ and on inhibition by ouabain of posterior gill microsomal Na+,K+-ATPase activity in the blue crab, Callinectes ornatus, acclimated to a dilute medium (21‰ salinity). This is the first kinetic demonstration of competition between spermine and spermidine for the cation sites of a crustacean Na+,K+-ATPase. Polyamine inhibition is enhanced at low cation concentrations: spermidine almost completely inhibited total ATPase activity, while spermine inhibition attained 58%; putrescine had a negligible effect on Na+,K+-ATPase activity. Spermine and spermidine affected both V and K for ATP hydrolysis but did not affect ouabain-insensitive ATPase activity. ATP hydrolysis in the absence of spermine and spermidine obeyed Michaelis–Menten behavior, in contrast to the cooperative kinetics seen for both polyamines. Modulation of V and K by K+, Na+, NH4 + and Mg2+ varied considerably in the presence of spermine and spermidine. These findings suggest that polyamine inhibition of Na+,K+-ATPase activity may be of physiological relevance to crustaceans that occupy habitats of variable salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号