首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preferential interactions of bovine serum albumin, lysozyme, chymotrypsinogen, ribonuclease A, and beta-lactoglobulin with polyethylene glycols (PEGs) of molecular weight 200-6,000 have been measured by dialysis equilibrium coupled with high precision densimetry. All the proteins were found to be preferentially hydrated in all the PEGs, and the magnitude of the preferential hydration increased with increasing PEG size for each protein. The change in the chemical potentials of the proteins with the addition of the PEGs had highly positive values, indicating a strong thermodynamic destabilization of the system by the PEGs. A viscosity study of the PEGs showed them to be randomly coiled polymers, as their radii of gyration were related to the molecular weight by Rg = aM0.55. The thickness of the effective shell impenetrable to PEG around protein molecules, calculated from the preferential hydration, was found to vary with PEG molecular weight in similar fashion as the PEG radius of gyration, supporting the proposal (Arakawa, T. & Timasheff, S.N., 1985a, Biochemistry 24, 6756-6762) that the preferential exclusion of PEGs from proteins is due principally to the steric exclusion of PEG from the protein domain, although favorable interactions with protein surface residues, in particular nonpolar ones, may compete with the exclusion. These thermodynamically unfavorable preferential exclusion interactions lead to the action of PEGs as precipitants, although they may destabilize protein structure at higher temperatures.  相似文献   

2.
The present paper is devoted to the derivation of a relation between the preferential solvation of a protein in a binary aqueous solution and its solubility. The preferential binding parameter, which is a measure of the preferential solvation (or preferential hydration) is expressed in terms of the derivative of the protein activity coefficient with respect to the water mole fraction, the partial molar volume of protein at infinite dilution and some characteristics of the protein-free mixed solvent. This expression is used as the starting point in the derivation of a relationship between the preferential binding parameter and the solubility of a protein in a binary aqueous solution. The obtained expression is used in two different ways: (1) to produce a simple criterion for the salting-in or salting-out by various cosolvents on the protein solubility in water, (2) to derive equations which predict the solubility of a protein in a binary aqueous solution in terms of the preferential binding parameter. The solubilities of lysozyme in aqueous sodium chloride solutions (pH=4.5 and 7.0), in aqueous sodium acetate (pH=8.3) and in aqueous magnesium chloride (pH=4.1) solutions are predicted in terms of the preferential binding parameter without any adjustable parameter. The results are compared with experiment, and for aqueous sodium chloride mixtures the agreement is excellent, for aqueous sodium acetate and magnesium chloride mixtures the agreement is only satisfactory.  相似文献   

3.
T Arakawa  S N Timasheff 《Biochemistry》1987,26(16):5147-5153
The causes of the salting-in of beta-lactoglobulin by glycine and NaCl, a solubility behavior contrary to expectations, were probed by a detailed study of the interactions between these solvent components and the protein. The preferential interactions of beta-lactoglobulin with solvent components in aqueous glycine and NaCl systems have been compared with those of bovine serum albumin and lysozyme. At neutral pH, beta-lactoglobulin exhibited insignificant preferential interactions in glycine and NaCl at low cosolvent concentrations and an increasing preferential hydration at higher concentrations, the levels approaching the values expected from the other two proteins. These results indicate considerable binding of the electrolytes to beta-lactoglobulin, sufficient to compensate for the exclusion due to perturbation of the solvent surface tension. The difference between the preferential interactions of beta-lactoglobulin and the other proteins with these two solvent additives was shown to be the cause of the increase of beta-lactoglobulin solubility even at high concentrations of the additives, at which they have salting-out effects on the other proteins. The preferential interactions of NaCl with the three proteins were examined as a function of pH. The results showed no pH dependence of the preferential hydration for bovine serum albumin and lysozyme, while this parameter increased significantly for beta-lactoglobulin at lower pH. This suggests that the binding of electrolytes to beta-lactoglobulin is due to a unique charge distribution on the surface of the protein around neutral pH, which imparts to this protein a large dipole moment.  相似文献   

4.
Solvent conditions play a major role in a wide range of physical properties of proteins in solution. Organic solvents, including dimethyl sulfoxide (DMSO), have been used to precipitate, crystallize and denature proteins. We have studied here the interactions of DMSO with proteins by differential refractometry and amino acid solubility measurements. The proteins used, i.e., ribonuclease, lysozyme, beta-lactoglobulin and chymotrypsinogen, all showed negative preferential DMSO binding, or preferential hydration, at low DMSO concentrations, where they are in the native state. As the DMSO concentration was increased, the preferential interaction changed from preferential hydration to preferential DMSO binding, except for ribonuclease. The preferential DMSO binding correlated with structural changes and unfolding of these proteins observed at higher DMSO concentrations. Amino acid solubility measurements showed that the interactions between glycine and DMSO are highly unfavorable, while the interactions of DMSO with aromatic and hydrophobic side chains are favorable. The observed preferential hydration of the native protein may be explained from a combination of the excluded volume effects of DMSO and the unfavorable interaction of DMSO with a polar surface, as manifested by the unfavorable interactions of DMSO with the polar uncharged glycine molecule. Such an unfavorable interaction of DMSO with the native protein correlates with the enhanced self-association and precipitation of proteins by DMSO. Conversely, the observed conformational changes at higher DMSO concentration are due to increased binding of DMSO to hydrophobic and aromatic side chains, which had been newly exposed on protein unfolding.  相似文献   

5.
Albumin showed very poor affinity for polyethylene glycol molecular weight (Mw) 1000 (30 M(-1)) and Mw 8000 (400 M(-1)) (PEG 1000 and PEG 8000). Polyethylene glycol of low Mw favours the ionization of the tyrosine (TYR) residues of albumin. Such variation might be a consequence of the change in dielectric constant at the domain of the protein by PEG binding. PEGs of high Mws stabilize the native compact state of human albumin showing negative preferential interaction with the protein. Interaction between PEGs and albumin is thermodynamically unfavourable, and becomes even more unfavourable for denatured proteins whose surface areas are larger than those of native ones leading to a stabilization of the unfolded state, which is manifested as a lowering of the thermal transition temperature. PEG 8000 perturbs the structure of the protein surface, partially modifying the layer of water and the microenvironment of the superficial aromatic residues (tryptophan, TRP and TYR) which is in agreement with the modifications of the UV spectrum of albumin by PEG 8000 and circular dichroism (CD) spectrum at high temperatures.  相似文献   

6.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1914-1923
The correlation between protein solubility and the preferential interactions of proteins with solvent components was critically examined with aqueous MgCl2 as the solvent system. Preferential interaction and solubility measurements with three proteins, beta-lactoglobulin, bovine serum albumin, and lysozyme, resulted in similar patterns of interaction. At acid pH (pH 2-3) and lower salt concentrations (less than 2 M), the proteins were preferentially hydrated, while at higher salt concentrations, the interaction was either that of preferential salt binding or low salt exclusion. At pH 4.5-5, all three proteins exhibited either very low preferential hydration or preferential binding of MgCl2. These results were analyzed in terms of the balance between salt binding and salt exclusion attributed to the increase in the surface tension of water by salts, which is invariant with conditions. It was shown that the increase in salt binding at high salt concentration is a reflection of mass action, while its decrease at acid pH is due to the electrostatic repulsion between Mg2+ ions and the high net positive charge on the protein. The preferential interaction pattern was paralleled by the variation of protein solubility with solvent conditions. Calculation of the transfer free energies from water to the salt solutions for proteins in solution and in the precipitate showed dependencies on salt concentration. This indicates that the nature of interactions between proteins and solvent components is the same in solution and in the solid state, which implies no change in protein structure during precipitation. Analysis of the transfer free energies and preferential interaction parameter in terms of the salting-in, salting-out, and weak ion binding contributions has led to the conclusions that, when the weak ion binding contribution is small, the predominant protein-salt interaction must be that of preferential salt exclusion most probably caused by the increase of the surface tension of water by addition of the salt. A necessary consequence of this is salting-out of the protein, if the protein structure is to remain unaltered.  相似文献   

7.
Branched polyethylene glycol for protein precipitation   总被引:1,自引:0,他引:1  
The use of linear PEGs for protein precipitation raises the issues of high viscosity and limited selectivity. This paper explores PEG branching as a way to alleviate the first problem, by using 3-arm star as the model branched structure. 3-arm star PEGs of 4,000 to 9,000 Da were synthesized and characterized. The effects of PEG branching were then elucidated by comparing the branched PEG precipitants to linear versions of equivalent molecular weights, in terms of IgG recovery from CHO cell culture supernatant, precipitation selectivity, solubility of different purified proteins, and precipitation kinetics. Two distinct effects were observed: PEG branching reduced dynamic viscosity; secondly, the branched PEGs precipitated less proteins and did so more slowly. Precipitation selectivity was largely unaffected. When the branched PEGs were used at concentrations higher than their linear counterparts to give similar precipitation yields, the dynamic viscosity of the branched PEGs were noticeably lower. Interestingly, the precipitation outcome was found to be a strong function of PEG hydrodynamic radius, regardless of PEG shape and molecular weight. These observations are consistent with steric mechanisms such as volume exclusion and attractive depletion.  相似文献   

8.
Arginine is one of the commonly used additives to enhance refolding yield of proteins, to suppress aggregation of proteins, and to increase solubility of proteins, and yet the molecular interactions that contribute to the role of arginine are unclear. Here, we present experiments, using bovine serum albumin (BSA), lysozyme (LYZ), and β-lactoglobulin (BLG) as model proteins, to show that arginine can enhance heat-induced aggregation of concentrated protein solutions, contrary to the conventional belief that arginine is a universal suppressor of aggregation. Results show that the enhancement in aggregation is caused only for BSA and BLG, but not for LYZ, indicating that arginine's preferential interactions with certain residues over others could determine the effect of the additive on aggregation. We use this previously unrecognized behavior of arginine, in combination with density functional theory calculations, to identify the molecular-level interactions of arginine with various residues that determine arginine's role as an enhancer or suppressor of aggregation of proteins. The experimental and computational results suggest that the guanidinium group of arginine promotes aggregation through the hydrogen-bond-based bridging interactions with the acidic residues of a protein, whereas the binding of the guanidinium group to aromatic residues (aggregation-prone) contributes to the stability and solubilization of the proteins. The approach, we describe here, can be used to select suitable additives to stabilize a protein solution at high concentrations based on an analysis of the amino acid content of the protein.  相似文献   

9.
Filtered proteins including the low-molecular-weight protein lysozyme are reabsorbed by the proximal tubule via adsorptive endocytosis. This process starts with binding of the protein to the brush-border membrane. The binding of 125I-labelled egg-white lysozyme (EC 3.2.1.17) to isolated brush-border membranes of rat kidney and the effect of several low-molecular weight proteins on that binding was determined. The Scatchard plot revealed a one-component binding type with a dissociation constant of 5.3 μM and 53.0 nmol/mg membrane protein for the number of binding sites. The binding of the cationic lysozyme was inhibited competitively by the addition of cationic cytochrome c to the incubation medium, while the neutral myoglobin had no effect. The anionic β-lactoglobulin A inhibited the lysozyme binding in a noncompetitive manner. These data suggest that the binding takes place between positively charged groups of the protein molecule and negative sites on the brush-border membrane, and, the competition between the cationic cytochrome c and the cationic lysozyme for the binding sites may be responsible for the inhibitory effect of cytochrome c on renal lysozyme reabsorption. The binding step at the brush-border membrane appears to be cation-selective.  相似文献   

10.
Proteins tend to undergo irreversible inactivation through several chemical modifications, which is a serious problem in various fields. We have recently found that arginine (Arg) suppresses heat‐induced deamidation and β‐elimination, resulting in the suppression of thermal inactivation of hen egg white lysozyme and bovine pancreas ribonuclease A. Here, we report that poly(ethylene glycol) (PEG) with molecular weight 1,000 acts as a thermoinactivation suppressor for both proteins, especially at higher protein concentrations, while Arg was not effective at higher protein concentrations. This difference suggests that PEG, but not Arg, effectively inhibited intermolecular disulfide exchange among thermally denatured proteins. Investigation of the effects of various polymers including PEG with different molecular weight, poly(vinylpyrolidone) (PVP), and poly(vinyl alchol) on thermoinactivation of proteins, circular dichroism, solution viscosity, and the solubility of reduced and S‐carboxy‐methylated lysozyme indicated that amphiphilic PEG and PVP inhibit intermolecular collision of thermally denatured proteins by preferential interaction with thermally denatured proteins, resulting in the inhibition of intermolecular disulfide exchange. These findings regarding the different mechanisms of the effects of amphiphilic polymers––PEG and PVP––and Arg would expand the capabilities of methods to improve the chemical stability of proteins in solution. Biotechnol. Bioeng. 2012; 109: 2543–2552. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Protein-protein interactions were measured for ovalbumin and for lysozyme in aqueous salt solutions. Protein-protein interactions are correlated with a proposed potential of mean force equal to the free energy to desolvate the protein surface that is made inaccessible to the solvent due to the protein-protein interaction. This energy is calculated from the surface free energy of the protein that is determined from protein-salt preferential-interaction parameter measurements. In classical salting-out behavior, the protein-salt preferential interaction is unfavorable. Because addition of salt raises the surface free energy of the protein according to the surface-tension increment of the salt, protein-protein attraction increases, leading to a reduction in solubility. When the surface chemistry of proteins is altered by binding of a specific ion, salting-in is observed when the interactions between (kosmotrope) ion-protein complexes are more repulsive than those between the uncomplexed proteins. However, salting-out is observed when interactions between (chaotrope) ion-protein complexes are more attractive than those of the uncomplexed proteins.  相似文献   

12.
The partitioning of bovine serum albumin and ovalbumin in different two-phase aqueous polymer systems is investigated using a thermodynamic approach. Systems used were polyethylene glycols (PEGs) of molecular weights 1000 to 10,000 Da and Dextran T500 (500,000 Da). Ovalbumin transfer to the top phase is exothermic, which suggests an electrostatic interaction between the hydroxyl groups of PEG and the hydrophilic side chain of the protein, whereas the bovine serum albumin partition is an endothermic process that is entropically driven, which coincides with its high surface hydrophobicity. The effect of PEG molecular weight on enthalpy and heat capacity changes, associated with the partition of both proteins, is examined on the basis of a preferential interaction of low-molecular-weight PEG with the protein surface.  相似文献   

13.
Computation of the electrophoretic mobility of proteins.   总被引:1,自引:1,他引:0       下载免费PDF全文
A scheme is presented for computing the electrophoretic mobility of proteins in free solution, accounting for the details of the protein shape and charge distribution. The method of Teubner is implemented using a boundary integral formulation within which the velocity distribution, the equilibrium electrical potential around the molecule, and the potential distribution due to the applied field are solved for numerically using the boundary element method. Good agreement of the numerical result is obtained for spheres with the corresponding semi-analytical specialization of Henry's analysis. For protein systems, the method is applied to lysozyme and ribonuclease A. In both cases, the predicted mobility tensors are fairly isotropic, with the resulting scalar mobilities being significantly smaller than for spheres of equal volume and net charge. Comparisons with previously published experimental results for ribonuclease show agreement to be excellent in the presence of a net charge, but poorer at the point of zero charge. The approach may be useful for evaluating approximate methods for estimating protein electrophoretic mobilities and for using electrophoretic measurements to obtain insight into charge distributions on proteins.  相似文献   

14.
Abstract

The binding of CTAB with the proteins, gelatin, hemoglobin, β-lactoglobulin and lysozyme follow first order kinetics and occurs either in two or three distinct stages. The number of stages depends on the overall configuration of the biopolymers. The denatured protein, gelatin has shown three-stage kinetics under all conditions, whereas the native proteins, hemoglobinn, β-lactoglobulin and lysozyme have exhibited two stage kinetics. Heat treated lysozyme in 8 mol dm-3 urea medium has also shown a two-stage kinetics. On the basis of non interacting binding sites on the proteins and independent sequential binding, the rates of reaction have been observed to increase with temperature and follow the trend k1 >> k2 > k3. The interaction of CTA+ with the proteins is both electrostatic and hydrophobic. Hemoglobin has shown maximum reaction rate whereas, β-lactoglobulin has shown a minimum. The activation parameters for the kinetic process have exhibited almost non-variant Δ G? and Δ H? < T Δ S? The formation of activation complex in the Eyring model is entropy controlled so also the overall kinetics. An isokinetic entropy-enthalpy compensation phenomenon has been observed for the respective kinetic stages.  相似文献   

15.
A systematic investigation of the effect of polyethylene glycol (PEG) 200 and 400 on the solution conformation of concanavalin A (con A) was made using circular dichroism (CD), tryptophan fluorescence, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and size-exclusion chromatography. Far-UV CD spectra of con A at 30%(v/v) PEGs show the retention of ordered secondary structure as compared to 70%(v/v) PEGs. Near-UV CD spectra showed the retention of native-like spectral features in the presence of 30%(v/v) PEGs. Intrinsic tryptophan fluorescence studies indicate a change in the environment of tryptophan residues on the addition of PEG. ANS binding was maximum at 30%(v/v) PEGs suggesting the compact "molten-globule"-like state with enhanced exposure of hydrophobic surface area. Size-exclusion chromatography indicates an intermediate hydrodynamic size at 30%(v/v) PEGs. GdnHCl denaturation of these states was a single-step, two-state transition. To study the possible minimum structural requirement in the specific binding, the effect of PEGs on the interaction of con A with ligand was investigated by turbidity measurements. The C50 value was less in PEG 400 suggesting the more inhibitory ability of PEG 400. The C50 value of PEGs was highest for dextran followed by glycogen, ovalbumin, and ovomucoid. From percentage inhibition of con A-ligands at 30%(v/v) PEG, maximum inhibition was in ovalbumin followed by ovomucoid, glycogen, and dextran. To summarize: con A at 30%(v/v) PEGs exists as compact intermediate with molten-globule-like characteristics, viz., enhanced hydrophobic surface area, retention of compact secondary as well as tertiary structure, and a considerable degree of carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and quaternary association in the legume lectin in particular, where precise topology is required for their biological activities.  相似文献   

16.
Savo Lapanje 《Biopolymers》1984,23(10):1943-1950
The thermodynamic quantities of solvation, that is, Gibbs free energy, enthalpy, and entropy for the transfer of lysozyme and β-lactoglobulin A from water to 6M guanidinium chloride solution, were calculated from the respective contributions of constituent groups. Comparison of the calculated values with the experimental ones reveals satisfactory agreement for lysozyme, whereas for β-lactoglobulin A, it is semiquantitative. Thus the method of calculation appears to be fundamentally sound. The reasons for the differences in calculated and experimental value are briefly discussed.  相似文献   

17.
This work aims to explore theoretically the molecular mechanisms of ligand binding to proteins through the use of molecular dynamics simulations. The binding of sodium dodecyl sulfate (SDS) to cobra cardio toxin A3 (CTX A3) and thiourea (TOU) to lysozyme have been chosen as the two model systems. Data acquisitions were made by Gromacs software. To begin with, the collisions of ligand molecules with every residue of CTX A3 and lysozyme were evaluated. With this information in hand, the average numbers of collisions with each residue was defined and then assessed. Next, a measure of the affinity of a residue, Pi, referred to as conformational factor, toward a ligand molecule was established. Based on the results provided, all site-making residues for CTX A3 and lysozyme were identified. The results are in good agreement with the experimental data. Finally, based on this method, all site-making residues of bovine carbonic anhydrase (BCA) toward the SDS ligand were predicted.  相似文献   

18.
PEG和DBBF修饰猪血红蛋白及其携氧性质   总被引:8,自引:2,他引:6  
采用聚乙二醇 (PEG)修饰蛋白质可以增大蛋白质的分子量 ,改善其生物相容性和在生物体内的停留时间。而小分子交联修饰则可以稳定血红蛋白的高级结构 ,改善其对组织的递氧能力。比较了 4种方法活化的PEG衍生物对猪血红蛋白的修饰效率、修饰产物的携氧功能和稳定性等。PEG的分子量、轭合PEG的数量及变构效应物的存在与否都会影响修饰产物的性质 ;考察了双 3,5二溴水杨酸延胡索酸酯 (DBBF)修饰猪血红蛋白的反应条件以及修饰产物的物理特性和携氧能力 ,并进一步采用PEG和DBBF联合修饰猪血红蛋白。结果证明 ,联合修饰产物具有稳定的四聚体结构 ,分子量达 10 70 0 0 ,半饱和氧分压P50 在 3.33kPa左右 ,接近于生理条件下人体红细胞的P50 值。  相似文献   

19.
Aqueous two-phase systems have been widely used for the separation and concentration of proteins. In this work we investigated the possibility of using aqueous two-phase system for the renaturation of inclusion body proteins by studying the effect of polyethylene glycol (PEG)-salt systems on the oxidative renaturation of hen egg-white lysozyme (HEWL) with guanidinium chloride (GdmCl) present in the system. To accomplish phase separation at moderately low concentrations of polymer and salt, the total GdmCl concentration had to be kept low (<1 M). The unfolded protein exhibited very low solubility under these conditions. In an attempt to increase the solubility of the protein, temperatures of 40, 50, and 60 degrees C were investigated. The effect of PEG molecular weight was also addressed. Best renaturation yields were obtained when using PEG 3400 and working at 50 degrees C. However, the total protein concentration had to be kept at a low level of 0.2 mg/mL. Lowering the total GdmCl concentration in the system resulted in increased aggregation.  相似文献   

20.
Development of protein stabilizing reagents, that suppress aggregation and assist refolding, is an important issue in biochemical technology related with the synthesis and preservation of therapeutic or other functional proteins. In the precedent research, we have developed a structured poly(ethylene glycol) (PEG) analogue with triangular geometry, which turns into a dehydrated state above ca. 60 °C. Focusing on this rather lower dehydration temperature than that of conventional linear PEGs, a capability of the triangle-PEG to stabilize proteins under thermal stimuli was studied for citrate synthase, carbonic anhydrase, lysozyme and phospholipase. Variable temperature high-tension voltage and circular dichroism spectroscopic studies on the mixtures of these proteins and the triangle-PEG showed that the triangle-PEG stabilizes carbonic anhydrase, lysozyme and phospholipase that exhibit denaturation temperatures higher than 60 °C, while substantially no stabilization was observed for citrate synthase that denatures below 60 °C. Hence, the dehydrated triangle-PEG likely interacts with partially unfolded proteins through the hydrophobic interaction to suppress protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号