首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial genome of Trypanosoma brucei does not appear to encode any tRNA genes. Isolated organellar tRNAs hybridize to nuclear DNA, suggesting that they are synthesized in the nucleus and subsequently imported into the mitochondrion. Most imported tRNAs have cytosolic counterparts, showing identical mobility on two-dimensional polyacrylamide gels. We have compared three nuclear-encoded mitochondrial tRNAs (tRNA(Lys), tRNA(Leu), tRNA(Tyr)) with their cytosolic isoforms by direct enzymatic sequence analysis. Our findings indicate that the primary sequences of the mitochondrial and the corresponding cytosolic tRNAs are identical. However, we have identified a mitochondrion-specific nucleotide modification of each tRNA which is localized to a conserved cytidine residue at the penultimate position 5' of the anticodon. The modification present in mature mitochondrial tRNA(Tyr) was not found in a mutant tRNA(Tyr) defective in splicing in either cytosolic or mitochondrial fractions. The mutant tRNA(Tyr) has been expressed in transformed cells and its import into mitochondria has been demonstrated, suggesting that the modified cytidine residue is not required for import and therefore may be involved in adapting imported tRNAs to specific requirements of the mitochondrial translation machinery.  相似文献   

2.
Enzymatic incorporation of ATP and CTP analogues into the 3' end of tRNA   总被引:15,自引:0,他引:15  
Structural analogues of adenosine 5'-triphosphate and cytidine 5'-triphosphate were investigated as substrates for ATP(CTP):tRNA nucleotidyl transferase. Eight out of 26 ATP analogues and six out of nine CTP analogues were incorporated into the 3' terminus of tRNA. In general, for the recognition of the substrates the modification of the cytidine is less critical than is the modification of adenosine. An isosteric substitution on the ribose residue is possible in both CTP and ATP. The free hydroxyls of these triphosphates can be replaced by an amino group or hydrogen atom without loss of substrate properties. Modifications of positions 1, 2, 6, and 8 on the adenine ring of ATP are not allowed whereas modification on positions 2, 4 and 5 on the cytosine ring of CTP are tolerated by the enzyme. No differences can be observed in the substrate properties of ATP(CTP):tRNA nucleotidyl transferase isolated from different sources. Methods for preparation of tRNA species, which are shortened at their 3' end by one or more nucleotides, and analytical procedures for characterisation of these modified tRNAs are described.  相似文献   

3.
(1) RNase Ms was inactivated by iodoacetate. The inactivation was most rapid at pH 6.0, and was inhibited in the presence of a denaturant such as 8 m urea or 6 m guanidine-HCL. (2) Competitive inhibitors protected RNase Ms from inactivation by iodoacetate; the effect was in the order 2',(3')-GTP greater than 2',(3')-AMP, 2',(3')-UMP greater than or equal to 2',(3')-CMP. The order is not consistent with that of the binding constants of the 4 nucleotides towards RNase Ms (A is greater than C greater than G greater than U). (3) RNase Ms was inactivated with the concomitant incorporation of one molar equivalent of carboxymethly group. The following evidence indicated that the carboxymethyl group was incorporated into the carboxyl group of an aspartic acid or glutamic acid residue. (i) The carboxymethyl group incorporated into RNase Ms was liberated by treatment with 0.1 n NaOH or 1 m hydroxylamine. (ii) The amino acid composition of carboxymethylated RNase Ms (CM RNase Ms) after acid hydrolysis is similar to that of RNase Ms. (4) 14C-Labeled CM RNase Ms was digested successively with alkaline protease and amino-peptidase M. The radioactive amino acid released was eluted just before aspartate on an amino acid analyzer. After hydrolysis with 6 n HCL, glutamic acid was produced exclusively from the radioactive amino acid. The specific radioactivity of this amino acid calculated from the radioactivity and glutamic acid formed was practctically the same as that of CM RNase Ms. Thus, it was concluded that a carboxymethyl group was incorporated at the carboxyl group of a glutamic acid residue of RNnase Ms. (5) CM RNase Ms bound with 2'-AMP to the same extent as native RNase Ms, but bound to a lesser extent with 2',(3')-GMP. (6) Although the conformation of CM RNase Ms as judged from the CD spectrum was practically the same as that of native RNase Ms, the reactivity of CM RNase Ms towards dinitrofluorobenzene was different from that of native RNase Ms, indicating some difference in the conformation. (7) These results indicate that one glutamic acid residue is involved in the active of RNase Ms.  相似文献   

4.
Several dinucleoside polyphosphates accept cytidine-3', 5'-bisphosphate from the adenylylated donor 5'-adenylylated cytidine 5',3'-bisphosphate in the T4 RNA ligase catalyzed reaction. The 5'-adenylylated cytidine 5',3'-bisphosphate synthesized in a first step, from ATP and cytidine-3',5'-bisphosphate, is used as a substrate to transfer the cytidine-3',5'-bisphosphate residue to the 3'-OH group(s) of diguanosine tetraphosphate (Gp4G) giving rise to Gp4GpCp and pCpGp4GpCp in a ratio of approximately 10 : 1, respectively. The synthesized Gp4GpCp was characterized by treatment with snake venom phosphodiesterase and alkaline phosphatase and analysis (chromatographic position and UV spectra) of the reaction products by HPLC. The apparent Km values measured for Gp4G and 5'-adenylylated cytidine 5',3'-bisphosphate in this reaction were approximately 4 mM and 0.4 mM, respectively. In the presence of 0.5 mM ATP and 0.5 mM cytidine-3',5'-bisphosphate, the relative efficiencies of the following nucleoside(5')oligophospho(5')nucleosides as acceptors of cytidine-3',5'-bisphosphate from 5'-adenylylated cytidine 5', 3'-bisphosphate are indicated in parentheses: Gp4G (100); Gp5G (101); Ap4G (47); Ap4A (39). Gp2G, Gp3G and Xp4X were not substrates of the reaction. Dinucleotides containing two guanines and at least four inner phosphates were the preferred acceptors of cytidine-3', 5'-bisphosphate at their 3'-OH group(s).  相似文献   

5.
Abstract Using site-saturation mutagenesis, we have established all possible amino acid substitutions at Tyr26 and Phe73 that are compatible with biological activity of the gene 5 protein in vivo. No substitutions were found at either site that gave rise to a fully functional gene 5 protein, indicating that these two amino acid residues are crucial. However, partial activity was found if either residue was replaced by another aromatic amino acid (Y26F, Y26W, F73Y, F73W). The results suggest that both Tyr26 and Phe73 are important for base stacking in the nucleoprotein complex. The functional consequences of the removal of the hydroxyl group from Tyr26 argue that this residue may, in addition, be involved in hydrogen bond formation to confer greater stability on the complex. In contrast, the addition of such a group to Phe73 reduces activity.  相似文献   

6.
Development of potent inhibitors of the coxsackievirus 3C protease   总被引:1,自引:0,他引:1  
Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.  相似文献   

7.
L-Ribulose-5-phosphate (L-Ru5P) 4-epimerase and L-fuculose-1-phosphate (L-Fuc1P) aldolase are evolutionarily related enzymes that display 26% sequence identity and a very high degree of structural similarity. They both employ a divalent cation in the formation and stabilization of an enolate during catalysis, and both are able to deprotonate the C-4 hydroxyl group of a phosphoketose substrate. Despite these many similarities, subtle distinctions must be present which allow the enzymes to catalyze two seemingly different reactions and to accommodate substrates differing greatly in the position of the phosphate (C-5 vs C-1). Asp76 of the epimerase corresponds to the key catalytic acid/base residue Glu73 of the aldolase. The D76N mutant of the epimerase retained considerable activity, indicating it is not a key catalytic residue in this enzyme. In addition, the D76E mutant did not show enhanced levels of background aldolase activity. Mutations of residues in the putative phosphate-binding pocket of the epimerase (N28A and K42M) showed dramatically higher values of K(M) for L-Ru5P. This indicates that both enzymes utilize the same phosphate recognition pocket, and since the phosphates are positioned at opposite ends of the respective substrates, the two enzymes must bind their substrates in a reversed or "flipped" orientation. The epimerase mutant D120N displays a 3000-fold decrease in the value of k(cat), suggesting that Asp120' provides a key catalytic acid/base residue in this enzyme. Analysis of the D120N mutant by X-ray crystallography shows that its structure is indistinguishable from that of the wild-type enzyme and that the decrease in activity was not simply due to a structural perturbation of the active site. Previous work [Lee, L. V., Poyner, R. R., Vu, M. V., and Cleland, W. W. (2000) Biochemistry 39, 4821-4830] has indicated that Tyr229' likely provides the other catalytic acid/base residue. Both of these residues are supplied by an adjacent subunit. Modeling of L-Ru5P into the active site of the epimerase structure suggests that Tyr229' is responsible for deprotonating L-Ru5P and Asp120' is responsible for deprotonating its epimer, D-Xu5P.  相似文献   

8.
Uridine-cytidine kinase (UCK), including human UCK2, are a family of enzymes that generally phosphorylate both uridine and cytidine. However, UCK of Thermus thermophilus HB8 (ttCK) phosphorylates only cytidine. This cytidine-restricted activity is thought to depend on Tyr93, although the precise mechanism remains unresolved. Exhaustive mutagenesis of Tyr93 in ttCK revealed that the uridine phosphorylation activity was restored only by replacement of Tyr93 with His or Gln. Replacement of His117 in human UCK2, corresponding to residue Tyr93 in ttCK, by Tyr resulted in a loss of uridine phosphorylation activity. These findings indicated that uridine phosphorylation activity commonly depends on a single residue in the UCK family.  相似文献   

9.
Chen T  Shaw C 《Peptides》2003,24(8):1123-1130
Nine bradykinin-related peptides were identified in Phyllomedusa sauvagei skin secretion using QTOF MS/MS fragmentation sequencing. The major peptides were (Thr6)-bradykinin, (Hyp3, Thr6)-bradykinin, (Thr6)-phyllokinin and (Hyp3, Thr6)-phyllokinin. The phyllokinins occurred in both sulfated and non-sulfated forms. All (Thr6)-substituted bradykinins/phyllokinins could be generated from a common precursor by differential post-translational processing and modification. The open-reading frame of the cloned precursor cDNA consisted of 62 amino acid residues with a single bradykinin/phyllokinin coding sequence located at the C-terminus. Structural features included a Glu-Arg processing site at the N-terminus of the bradykinin/phyllokinin domain and the absence of an acidic amino acid residue adjacent to the C-terminal Tyr residue in the phyllokinins. However, the neutral amino acid residue (Ile) at position -1 and the basic amino acid residue (Arg) at position -2 from the Tyr residue, constitute a sulfation motif previously identified only in a protochordean.  相似文献   

10.
The human equilibrative nucleoside transporters I and 2 (hENT1, hENT2) share 50% amino acid identity and exhibit broad selectivities, accepting purine and pyrimidine nucleosides as permeants. The permeant selectivity of hENT2 is less well understood because of the low abundance of the native transporter in cells amenable to functional analysis. Recent studies of hENT2 produced in recombinant form in functional expression systems have shown that it differs from hENT1 in that it transports nucleobases. To further understand the structural requirements for permeant interaction with hENT2, we compared the relative abilities of uridine, cytidine, and their analogues to inhibit transport of [3H]uridine by recombinant hENT1 and hENT2 produced in yeast. hENT1 and hENT2 tolerated halogen modification at the 5 position of the base and the 2' and 5' positions of the ribose moieties of uridine whereas removal of the hydroxyl group at the 3' position of the ribose moiety of uridine eliminated interaction with both transporters. hENT2 displayed a lower ability, compared with hENT1, to interact with cytidine and cytidine analogues, suggesting a low tolerance for the presence of the amino group at the 4 position of the base.  相似文献   

11.
E coli tRNA2Phe was modified at 25 degrees C with 3M sodium bisulphite, pH6.0, for periods of up to 48 hours, Three cytadinine residues, at position 17, 74 and 75 from the 5' end were each deaminated to uridine. The 2-methylthio-N6-isopentenyl adenosine at position 37 formed a 1:1 bi-sulphite addition product which was stable to alkaii. No other residues were permanently modified. The rate of modification of each residue was first order with respect to remaining unmodified nucleotide, the time of half reaction, t1/2, being different for each residue. C17 reaction reacted at twice the rate of cytidine in PolyC, indicating that it occupied a very exposed position in the tRNA.  相似文献   

12.
A method is described for the separation of cytidine 3',5'-cyclic monophosphate (cyclic CMP) from cytidine tri-, di- and mono-phosphates and from cytidine 3',5'-cyclic pyrophosphate, cytidine 2'-monophosphate-3',5'-cyclic monophosphate, cytidine 2'-O-aspartyl-3',5'-cyclic monophosphate and cytidine monophosphate, compounds previously shown to be the result of putative cytidylate cyclase activity. This separation, involving elution of a novel bilayer column of QAE-Sephadex and alumina with 0.03 M-HCl, has been incorporated into an assay protocol to determine the enzyme-catalysed conversion of radiolabelled CTP to cyclic CMP. By this assay, cytidylate cyclase activity has been shown to be present in rat lung, spleen, ovary, testes, brain, stomach, liver, heart and kidney preparations; the activity was of a similar order in each tissue and had a sharp pH optimum of 7.0-7.5. The liver preparation had a Vmax. of 1.2 nmol of cyclic CMP formed/min per mg, and a Km of 220 microM-CTP, and although active in the absence of added cations, it was stimulated by Fe2+ and Mn2+ ions. In several of the tissues examined, the cytidylate cyclase activity was inversely proportional to age of the animals.  相似文献   

13.
Abstract: Neurofibroma type 1 tissue was investigated for the presence of growth-promoting activity on human neuroblastoma cells. The activity was isolated by gel filtration and reversed-phase column chromatographs from neurofibroma type 1 extracts. An adenosine-containing dinucleotide (adenylyl(3'-5')cytidine-3'-phosphate) was identified as one of the major components of the activities by its enzymatic fragmentation and liquid chromatography/mass spectrometry. Synthetic adenosine-containing dinucleotide derivatives such as cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, adenylyl(3'-5')cytidine, and adenylyl(2'-5')cytidine showed a similar action. Cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, and adenylyl(2'-5')cytidine, which are able to release a free adenosine through enzymatic hydrolysis, in particular elicited a strong activity corresponding to that of adenosine with the highest action. These results suggest that neuroblastoma cells are able to use adenosine-containing dinucleotides as well as mononucleotides for their survival and proliferation.  相似文献   

14.
A ribonuclease was isolated from serum-free supernatants of the human colon adenocarcinoma cell line HT-29. It was purified by cation-exchange and C18 reversed-phase high-performance liquid chromatography. The protein is basic, has a molecular weight of approximately 16,000, and has an amino acid composition that is significantly different from that of human pancreatic ribonuclease. The amino terminus is blocked, and the carboxyl-terminal residue is glycine. The catalytic properties of this ribonuclease resemble those of the pancreatic ribonucleases in numerous respects. Thus, it exhibits a pH optimum of approximately 6 for dinucleotide cleavage and employs a two-step mechanism in which transphosphorylation to a cyclic 2',3'-phosphate is followed by slower hydrolysis to produce a 3'-phosphate. It does not cleave NpN' substrates in which adenosine or guanosine is at the N position and prefers purines at the N' position. Like bovine ribonuclease A, the HT-29-derived ribonuclease is inactivated by reductive methylation or by treatment with iodoacetate at pH 5.5 and is strongly inhibited by the human placental ribonuclease inhibitor. However, in contrast, the tumor enzyme does not cleave CpN bonds at an appreciable rate and prefers poly(uridylic acid) as substrate 1000-fold over poly(cytidylic acid). It also hydrolyzes cytidine cyclic 2',3'-phosphate at least 100 times more slowly than uridine cyclic 2',3'-phosphate and is inhibited much less strongly by cytidine 2'-monophosphate than by uridine 2'-monophosphate. Other ribonucleases known to prefer poly(uridylic acid) were isolated both from human serum and from liver and were compared with the tumor enzyme. The physical, functional, and chromatographic properties of the serum ribonuclease are essentially identical with those of the tumor enzyme. The liver enzymes, however, differ markedly from the HT-29 ribonuclease. The potential utility of the tumor ribonuclease in the diagnosis of cancer is considered.  相似文献   

15.
Mouse antibodies to (2'-5')oligoadenylates were obtained by the immunization of animals with the (2'-5')oligoadenylic acid trimer conjugated with bovine serum albumin through a 2',3'-levulinic acid residue. Using radioimmunoassay, the reactivity of mouse polyclonal antibodies to the (2'-5')oligoadenylic acid trimer was studied for the trimer analogues containing 9-(3-deoxy-3-fluro-beta-D- xylofuranosyl)adenine and 3'-deoxy-3'-fluoro-adenosine in various positions of the chain. It was found that (a) the three-dimensional structure of short oligonucleotides is an important factor in the antibody recognition; (b) antibodies are more sensitive to modifications of the 5'-terminal and central ribose fragments of the (2'-5')oligoadenylic acid trimer; (c) the 3'-hydroxyl group plays a secondary role in the formation of the antigen determinant.  相似文献   

16.
The salvage pathways of nucleotide biosynthesis are more diverse and are less well understood as compared with de novo pathways. Uridine-cytidine kinase (UCK) is the rate-limiting enzyme in the pyrimidine-nucleotide salvage pathway. In this study, we have characterized a UCK homologue of Thermus thermophilus HB8 (ttCK) biochemically and structurally. Unlike other UCKs, ttCK had substrate specificity toward only cytidine and showed no inhibition by UTP, suggesting uridine does not bind to ttCK as substrate. Structural analysis revealed that the histidine residue located near the functional group at position 4 of cytidine or uridine in most UCKs is substituted with tyrosine, Tyr93, in ttCK. Replacement of Tyr93 by histidine or glutamine endowed ttCK with phosphorylation activity toward uridine. These results suggested that a single amino acid residue, Tyr93, gives cytidine-limited specificity to ttCK. However, replacement of Tyr93 by Phe or Leu did not change the substrate specificity of ttCK. Therefore, we conclude that a residue at this position is essential for the recognition of uridine by UCK. In addition, thymidine phosphorylase from T. thermophilus HB8 was equally active with thymidine and uridine, which indicates that this protein is the sole enzyme metabolizing uridine in T. Thermophilus HB8. On the basis of these results, we discuss the pyrimidine-salvage pathway in T. thermophilus HB8.  相似文献   

17.
To determine the function of the enzyme transfer ribonucleic acid (tRNA) nucleotidyltransferase in vivo, five mutants of Escherichia coli containing low levels of this enzyme were isolated. Since no selection procedure for such mutants existed, these strains were isolated by assay of large numbers of colonies from a heavily mutagenized stock. A procedure employing cells made permeable to tRNA and ATP was used to screen the large number of colonies required for the isolation. All the mutants contained less than 20% of the normal level of the AMP-incorporating activity of tRNA nucleotidyltransferase in extracts prepared by several methods, and the best mutant contained only about 2% of this activity. Three of the mutants also had equally low levels of the cytidine 5'-monophosphate-incorporating activity of the enzyme. Despite these low activities, the mutant strains displayed relatively normal growth characteristics at all temperatures examined. The enzyme in the mutant strains was not temperature sensitive, nor were any other abnormal biochemical properties detected. tRNA isolated from the mutant strains was missing significant amounts of its 3' terminal adenosine 5'-monophosphate residue, amounting to 10 to 15% in the best mutant. However, only small amounts of the terminal cytidine 5'-monophosphate residue were missing. The results indicate that tRNA nucleotidyltransferase is involved in some aspect of synthesis or repair of the 3' terminus of tRNA, and that the enzyme is present in large excess over its requirements for this function.  相似文献   

18.
A series of conformationally restricted analogs of the hen egg lysozyme (HEL) decapeptide 52-61 in which the conformationally flexible Tyr53 residue was replaced by several more constrained tyrosine and phenylalanine analogs was prepared. Among these tyrosine and phenylalanine analogs were 1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid (Htc), 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), 4-amino- 1,2,4,5-tetrahydro-8-hydroxy-2-benzazepine-3-one (Hba), 4-amino-1,2,4,5-tetrahydro-2-benzazepine-3-one (Aba), 2-amino-6-hydroxytetralin-2-carboxylic acid (Hat) and 2-amino-5-hydroxyindan-2-carboxylic acid (Hai) in which the rotations around Calpha-Cbeta and Cbeta-Cgamma were restricted because of cyclization of the side-chain to the backbone. Synthesis of Pht-Hba-Gly-OH using a modification of the Flynn and de Laszlo procedure is described. Analogs of beta-methyltyrosine (beta-MeTyr) in which the side-chains were biased to particular side-chain torsional angles because of substitution at the beta-hydrogens were also prepared. These analogs of HEL[52-61] peptide were tested for their ability to bind to the major histocompatibility complex class II I-Ak molecule and to be recognized in this context by two T-cell hybridomas, specific for the parent peptide HEL[52-61]. The data showed that the conformation and also the configuration of the Tyr53 residue influenced both the binding of the peptide to I-Ak and the recognition of the peptide/I-Ak complex by a T-cell receptor.  相似文献   

19.
Wang YC  Wu YC  Yeh CC  Hwang CC 《Biopolymers》2007,86(3):231-239
Motivated by recent experimental work on Leu-Enkephalin modification with (4-Carboxamido)phenylalanine (Cpa), we perform MD simulations to study the structure-activity relationships of the [Cpa(1), Leu(5)]-enkephalin (Cpa-LE) for better understandings of the binding affinity in delta-selective opioid ligands. Recently, Tyr(1) substituted into Cpa(1) form was experimentally found to be the first example of an amino acid that acts as a surrogate for Tyr(1) in opioid peptide ligands, which challenges a long-standing belief that a phenolic residue is required for high affinity binding. Our simulations show the Cpa-LE structure in aqueous solution revealed that the occurrence of single-bend packed state can be stabilized by an intramolecular hydrogen bond from Leu(5)-NH to Gly(2)-CO (5-->2). In addition, an intramolecular sidechain to backbone hydrogen bond, i.e., hydrogen bond binding between the sidechain carbonyl CO group of the Cpa residue and backbone amide NH group of the Phe residue was examined. Furthermore, the hydration effects of carboxamido group (CONH(2)) for Cpa residue and 5-->2 hydrogen bond were calculated via the solute-solvent radial distribution functions g(alpha-beta) (r), providing direct evidence of strong hydrogen bond interactions. Our simulation results further reveal the chi(1) rotamers of the Cpa(1) and Phe(4) that show preferences for trans and gauche (-), respectively. Finally, we elucidate the probability distributions of two aromatic rings among the Cpa-LE, Leu-enkephalin, and delta pharmacophore model. The results show that modified the Tyr(1) to Cpa(1) can lead to increase the potency and selectivity for delta-opioid receptor (DOR), consistent with experimental findings.  相似文献   

20.
Degradation of the 2'-phosphates, 3'-phosphates, 5'-phosphates, 2':3'-cyclic phosphates, 3':5'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) of adenosine, guanosine, cytidine, and uridine catalyzed by Fusarium phosphodiesterase-phosphomonoesterase was followed by means of high performance liquid chromatography. All the nucleotides were susceptible to the enzyme to a greater or lesser degree, and the kinetic constants, Km and kcat, were determined at pH 5.3 and 37 degrees C. These constants were affected by both the nucleoside moiety and the position of the phosphate. Judged from kcat/Km, the 3'-phosphates, 2':3'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) were good substrates, whereas the 2'-phosphates, 5'-phosphates, and 3':5'-cyclic phosphates were poor substrates except for adenosine 2'-phosphate, adenosine 5'-phosphate, and cytidine 5'-phosphate, which were hydrolyzed relatively easily. Among the phosphodiesters, the 2':3'-cyclic phosphates of adenosine, guanosine, and cytidine; and the 3':5'-cyclic phosphates of adenosine and cytidine were degraded into nucleoside and inorganic phosphate without release of intermediary phosphomonoester into the medium. Other phosphodiesters were degraded stepwise releasing definite intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号