共查询到20条相似文献,搜索用时 15 毫秒
1.
The results presented in this work were obtained with two citrus genotypes, the chloride-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the chloride-sensitive Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.]. The data show that chloride uptake under salinization is driven by passive forces. In both species, net rates of chloride root uptake increased linearly, without saturation, with the increase of external NaCl concentrations (30–240 mol m–3). Uptake rates, on a μ g g root dry weight–1 h–1 basis, in Cleopatra and Carrizo decreased (from 38 to 21) and increased (from 21 to 35), respectively, with the increase (about three-fold) of the shoot to root ratio. With the appropriate shoot to root ratio in each genotype, it was demonstrated that at identical external doses of NaCl, Cl– uptake rates and Cl– xylem concentrations in the two species were very similar. Root pruning and defoliation showed that the amount of chloride taken by the plant was a function of the size of the root system, whereas leaf chloride concentration, the parameter responsible for salt damage, was dependent upon leaf biomass. Measurements of water transpiration suggested that chloride root uptake and leaf accumulation might be linked to water absorption and transpiration rates, respectively. The data indicate that plant morphology is a crucial factor determining salt-tolerance in citrus. 相似文献
2.
We hypothesized that the grazing of vesicular-arbuscular mycorrhizal (VAM) hyphae by soil animals could be responsible for the lack of a direct relationship between mycorrhizal infection intensity and nutrient uptake under field conditions. To test this hypothesis, we determined the effect of a range of densities of the collembola, Folsomia candida, on growth, VAM infection, and P uptake in Geranium robertianum, a common forest herb, under greenhouse conditions. Total and aboveground growth were greater at low collembola density than either at higher collembola density or without collembola. These differences were greater when the plants were grown in a high organic content soil mix than when grown in sand. Root mass was not affected by collembola density. In the soil mix, root length decreased with increasing collembola density, but not in the sand. The percent of root length infected with VAM was lower at any collembola density than when collembola were absent. Total infected root length decreased linearly with increasing collembola density. Few significant differences in P uptake or tissue concentration were found. Thus, plant growth (but not P uptake) may be stimulated at low collembola density and inhibited at high. We discuss mechanisms which may be responsible for this non-linear response, and the implications of the pattern of response to studies of plant competition, nutrient turnover, and revegetation. 相似文献
3.
Soil temperature and flooding effects on two species of citrus 总被引:2,自引:0,他引:2
Summary Rough lemon (Citrus jambhiri Lush.) and sour orange (C. aurantium L.) seedlings were grown at constant soil temperatures of 16, 24, and 33 C for 3 months. Shoot and root growth of rough lemon was greatest at 33 C while growth of sour orange was greatest at 24 C. There were no significant effects of soil temperature on shoot: root ratio, leaf water potential or stomatal conductance. The hydraulic conductivity of intact root systems of both species was highest when seedlings were grown at 16 C. Thus, acclimation through greater root conductivity at low soil temperature may have compensated for decreased root growth at 16 C and negated effects of soil temperature on plant water relations. Half the plants growing at each soil temperature were subsequently flooded. Within 1 week, the soil redox potential (Eh) dropped below zero mV, reaching a minimum Eh of –250mV after 3 weeks of flooded conditions. Flooded plants exhibited lower root conductivity, a cessation of shoot growth, lower leaf water potentials, lower stomatal conductances, and visual sloughing of fibrous roots. Decreases in root conductivity in response to flooding were large enough to account for the observed decreases in stomatal conductance.Florida Agricultural Experiment Stations Journal Series No. 4080. 相似文献
4.
Griffin Kevin L. Bashkin Michael A. Thomas Richard B. Strain Boyd R. 《Plant and Soil》1997,190(1):11-18
We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH
4
+
, and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (mol CO2 plant–1 s–1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (mol CO2 g root–1 s–1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 mol g–1 s–1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 mol g–1 s–1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species. 相似文献
5.
The effects of Ni and Cd on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were investigated in a pot experiment. Seedlings were either inoculated with Laccaria bicolor (Maire) Orton or left uninoculated before being planted in pots containing a mixture of sandy soil from the B-horizon of a coniferous forest, small stones and pure quartz sand. The pots were supplied with small amounts of a balanced nutrient solution every 24 h using peristaltic pumps. Nickel or Cd were added as chlorides to the nutrient solution at levels of 85 M Ni (Ni 1), 170 M Ni (Ni 2), or 8.9 M Cd. Mycorrhizal colonisation of the roots was nearly 100% in the mycorrhizal treatments. The mycorrhizal seedlings grew significantly better than the non-mycorrhizal ones. The weight of mycorrhizal seedlings in the Ni 2 treatment was 29% lower than that of the mycorrhizal controls, but still 34% greater than that of the non-mycorrhizal seedlings not exposed to metals. There was an overall, statistically significant, negative effect of metals on plant yield. Mycorrhizal plants had lower root:shoot (R:S) ratios than non-mycorrhizal plants and the R:S ratio was increased by metal exposure, particularly in the non-mycorrhizal seedlings. Plant concentrations of Cd or Ni were not affected by mycorrhizal colonisation, but total uptake of Cd and Ni was higher in bigger mycorrhizal seedlings. Nickel decreased P concentration in all seedlings and Cd decreased P concentration in the non-mycorrhizal seedlings. Generally, the mycorrhizal seedlings grew better than non-mycorrhizal ones and had better P, K, Mg and S status. Root growth was not significantly affected by the metal treatments. The reduction in mean shoot growth of non-mycorrhizal plants, relative to the metal-free control, appeared higher than in mycorrhizal plants but was not statistically significant due to high variation in the non-mycorrhizal plants not exposed to metals. The main mycorrhizal effect was thus increased nutrient uptake and growth of the seedlings. 相似文献
6.
Pimienta-Barrios E Gonzalez del Castillo-Aranda ME Munoz-Urias A Nobel PS 《Annals of botany》2003,92(2):239-245
The effects of drought and the fungicide benomyl on a wild platyopuntia, Opuntia robusta Wendl., growing in a rocky semi-arid environment were assessed. Cladode phosphorus content, cladode water potential and daily net CO2 uptake were measured monthly in 2000 and 2001 before, during and after the summer rainy period. During 2000, the formation of new roots and new cladodes was severely suppressed in response to a prolonged drought, impairing the development of the symbiotic relationship between the arbuscular mycorrhizal (AM) fungi and the roots. Hence no effect of benomyl application was observed on daily carbon assimilation by this Crassulacean acid metabolism plant. During 2001, drought was interrupted, and new cladodes and roots were formed in response to rainfall. Benomyl was highly effective in suppressing root colonization by AM-fungi; however, daily C assimilation was reduced by benomyl application only in October. Thus, the inhibition of AM-fungal colonization by benomyl did not affect photosynthesis, water uptake and P uptake under prolonged drought. 相似文献
7.
Johee Yoon Masayo Abe-Suzuki Pudjadi Eko Hiroshi Tamai Shigeichiro Hanamitsu Kaneyuki Nakane 《Ecological Research》2006,21(1):117-125
The hydroxyl (OH) radical, which is generated in polluted dew water on leaf surfaces of the Japanese apricot (Prunus mume), is known to be a potent oxidant. In order to investigate the effects of the OH radical formed in polluted dew water on the photosynthesis and growth of 3-year-old seedlings of P. mume, OH radical-generating solutions simulating polluted dew water were sprayed in the early morning as a mist throughout a growing season onto the leaf surfaces of seedlings growing in experimental greenhouses. Four OH radical-generating solutions (0, 6, 18 and 54 M H2O2 with Fe(III) and an oxalate ion) were used in the mist treatment. Five months after the beginning of treatment, the leaves exposed to the mist containing 54 M H2O2 showed a significantly smaller maximum CO2 assimilation rate (Amax) and stomatal conductance (gs) as compared to the leaves exposed to the mist containing 0 M H2O2. Exposure of P. mume seedlings to the OH radical-generating mist had caused a reduction in the dry weight and relative growth rate (RGR) of the above-ground parts (stem + branch) at the end of the growing season. A significant positive correlation was shown between RGR and Amax. Thus, the effects of oxidants generated in polluted dew water on leaf surfaces can be considered to be a cause of the decrease in leaf photosynthesis and growth of P. mume. 相似文献
8.
In order to better elucidate fixed-C partitioning, nutrient acquisition and water relations of prairie grasses under elevated
[CO2], we grew the C4 grass Bouteloua gracilis (H.B.K.) lag ex Steud. from seed in soil-packed, column-lysimeters in two growth chambers maintained at current ambient [CO2] (350 μL L−1) and twice enriched [CO2] (700 μL L−1). Once established, plants were deficit irrigated; growth chamber conditions were maintained at day/night temperatures of
25/16°C, relative humidities of 35%/90% and a 14-hour photoperiod to simulate summer conditions on the shortgrass steppe in
eastern Colorado. After 11 weeks of growth, plants grown under CO2 enrichment had produced 35% and 65% greater total and root biomass, respectively, and had twice the level of vesicular-arbuscular
mycorrhizal (VAM) infection (19.8% versus 10.8%) as plants grown under current ambient [CO2]. The CO2-enriched plants also exhibited greater leaf water potentials and higher plant water use efficiencies. Plant N uptake was
reduced by CO2 enrichment, while P uptake appeared little influenced by CO2 regime. Under the conditions of the experiment, CO2 enrichment increased root biomass and VAM infection via stimulated growth and adjustments in C partitioning below-ground.
The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.
The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. 相似文献
9.
The effects of phosphorus (P) application and mycorrhizal inoculation on the root characteristics of subterranean clover and
ryegrass were examined. Phosphorus application increased total root length, root surface area and root volume of both plant
species. In contrast, mycorrhizal infection only affected the root characteristics of subterranean clover. Ryegrass took up
more P than non-mycorrhizal subterranean clover at all levels of application. However, mycorrhizal infection only increased
P uptake by subterranean clover and there was no difference in P uptake between ryegrass and mycorrhizal subterranean clover
at low levels of P application. When the P uptake was expressed on the basis of any of the root characteristics, subterranean
clover were superior to ryegrass suggesting that the greater uptake of P by ryegrass is not due to a higher efficiency in
absorption of P from soil solution, but rather to a large root system. 相似文献
10.
The growth response of Dutch salt marsh species (C3 and C4) to atmospheric CO2 enrichment was investigated. Tillers of the C3 speciesElymus athericus were grown in combinations of 380 and 720 11-1 CO2 and low (O) and high (300 mM NaCl) soil salinity. CO2 enrichment increased dry matter production and leaf area development while both parameters were reduced at high salinity. The relative growth response to CO2 enrichment was higher under saline conditions. Growth increase at elevated CO2 was higher after 34 than 71 days. A lower response to CO2 enrichment after 71 days was associated with a decreased specific leaf area (SLA). In two other experiments the effect of CO2 (380 and 720 11-1) on growth of the C4 speciesSpartina anglica was studied. In the first experiment total plant dry weight was reduced by 20% at elevated CO2. SLA also decreased at high CO2. The effect of elevated CO2 was also studied in combination with soil salinity (50 and 400 mM NaCl) and flooding. Again plant weight was reduced (10%) at elevated CO2, except under the combined treatment high salinity/non-flooded. But these effects were not significant. High salinity reduced total plant weight while flooding had no effect. Causes of the salinity-dependent effect of CO2 enrichment on growth and consequences of elevated CO2 for competition between C3 and C4 species are discussed. 相似文献
11.
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined. 相似文献
12.
The influence of increasing atmospheric CO2 on shoot growth, leaf nitrogen and phosphorus concentrations and carbohydrate composition was investigated in cotton and wheat. Shoot dry weight of both species was generally higher at elevated CO2, especially at high rates of available soil N and P. Critical leaf N concentration was reduced but critical P concentration was increased in both species at high CO2. 相似文献
13.
In view of the need to exploit saline water resources in agriculture in arid zones, we investigated the salt tolerance of Opuntia ficus-indica in plants growing in solution culture. Salt (NaCl) was added in concentrations ranging from 5 (control) to 200 mol m-3. Cladode growth was sensitive to salinity, being 60% of the control at 50 mol m-3 NaCl. The root-to-stem ratio decreased significantly only at 200 mol m-3. Various other parameters were studied, such as water content, Na, K and Cl content, osmotic pressure, and CO2 uptake. Of these parameters the decreases in cladode water content and CO2 uptake were related to the decrease in cladode growth. Raised salinity increased cladode osmotic pressure, which was associated with tissue dehydration. We concluded that osmotic adjustment does not occur in prickly pear under salt stress. 相似文献
14.
Fifty-d-old poplar (Populus deltoides L.) plants were irrigated with 50-200 mM NaCl. 100 and 200 mM NaCl significantly reduced net photosynthetic rate, chlorophyll and carotenoid contents, leaf area, dry matter accumulation, and harvest index (HI) in all tested poplar clones (Bahar, S7C15, and WSL22). Clone S7C15 was more tolerant to salinity than the other clones. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
15.
Adele Muscolo Maria Sidari Maria Rosaria Panuccio Carmelinda De Santis Angela Finocchiaro 《Plant and Soil》2005,269(1-2):309-320
The early effects of low molecular weight phenolic compounds, released by Pinus laricio and Pinus pinaster litter, on ammonium uptake and its assimilation in two Pinus species were studied. In Pinus laricio seedlings, the exposure to phenols extracted from Pinus laricio litter increased not only the ammonium uptake but also the activity of the main enzymes involved in its assimilation, whereas
the phenols extracted from Pinus pinaster litter had a negative effect on these metabolic processes. In Pinus pinaster seedlings, the exposure to both phenols decreased the ammonium uptake and the activity of the main enzymes involved in its
assimilation. Histological analysis carried out in Pinus laricio roots showed that phenols extracted from Pinus laricio litter induced the greatest growth of cortex, element through which occurs the ions uptake in plants, whereas phenol extracted
from Pinus pinaster litter inhibited cortex development. On the other hand, in Pinus pinaster seedlings the observation showed that both phenols inhibited cortex growth indicating a strict correlation between cortex
development and ammonium uptake and its assimilation. 相似文献
16.
Birch seedlings (Betula pendula) were grown for four months in a greenhouse at three nutrient levels (fertilization of 0, 100 and 500 kg ha-1 monthy) and at four CO2 concentrations (350, 700, 1050 and 1400 ppm). The effect of CO2 concentration on the biomass production depended on the nutrient status. When mineralization of the soil material was the only source of nutrients (0 kg ha-1), CO2 enhancement reduced the biomass production slightly, whereas the highest production increase occurred at a fertilization of 100 kg ha-1, being over 100% between 350 and 700 ppm CO2. At 500 kg ha-1 the production increase was smaller, and the production decreased beyond a CO2 concentration of 700 ppm. The CO2 concentration had a slight effect on the biomass distribution, the leaves accounting for the highest proportion at the lowest CO2 concentration (350 ppm). An increase in nutrient status led to a longer growth period and increased the nutrient concentrations in the plants, but the CO2 concentration had no effect on the growth rhythm and higher CO2 reduced the nutrient concentrations. 相似文献
17.
Sustained increases in plant production in elevated CO2 depend on adequate belowground resources. Mechanisms for acquiring additional soil resources include increased root allocation and changes in root morphology or physiology. CO2 research to date has focused almost exclusively on changes in biomass and allocation. We examined physiological changes in nitrate and ammonium uptake in elevated CO2, hypothesizing that uptake rates would increase with the amount of available CO2. We combined our physiological estimates of nitrogen uptake with measurements of root biomass to assess whole root-system rates of nitrogen uptake. Surprisingly, physiological rates of ammonium uptake were unchanged with CO2, and rates of nitrate uptake actually decreased significantly (P<0.005). Root boomass increased 23% in elevated CO2 (P<0.005), but almost all of this increase came in fertilized replicates. Rates of root-system nitrogen uptake in elevated CO2 increased for ammonium in nutrient-rich soil (P<0.05) and were unchanged for nitrate (P>0.80). Root-system rates of nitrogen uptake were more strongly correlated with physiological uptake rates than with root biomass in unamended soil, but the reverse was true in fertilized replicates. We discuss nitrogen uptake and changes in root biomass in the context of root nutrient concentrations (which were generally unchanged with CO2) and standing pools of belowground plant nitrogen. In research to date, there appears to be a fairly general increase in root biomass with elevated CO2, and little evidence of up-regulation in root physiology. 相似文献
18.
N-fixing trees facilitate the growth of neighboring trees of other species. These neighboring species benefit from the simple presence of the N fixation symbiosis in their surroundings. Because of this phenomenon, it has been hypothesized that a change in atmospheric CO2 concentration may alter the role of N-fixing trees in their environment. It is thought that the role of N-fixing trees in ecosystems of the future may be more important since they may help sustain growth increases due to increased CO2 concentration in nitrogen limited forests. We examined: (1) whether symbiotically fixed N was exuded from roots, (2) whether a doubled atmospheric CO2 concentration would result in increased organic N exudation from roots, and (3) whether increased temperature or N availability affected N exudation from roots. This study analyzed exudation of dissolved organic N from the roots of seedlings of the N-fixing tree Robinia pseudoacacia L. in a full factorial design with 2 CO2 (35.0 and 70.0 Pa) × 2 temperature (26 or 30 °C during the day) × 2 N fertilizer (0 and 10.0 mM N concentration) levels. Trees with no other source of N except N fixation exuded about 1% to 2% of the fixed N through their roots as dissolved organic N. Increased atmospheric CO2 concentrations did not, however, increase N exudation rates on a per gram belowground biomass basis. A 4 °C increase in temperature and N fertilization did, however, significantly increase N exudation rates. These results suggest that exudation of dissolved organic N from roots or nodules of N-fixing trees could be a significant, but minor, pathway of transferring N to neighboring plants in a much more rapid and direct way than cycling through death, decomposition and mineralization of plant residues. And, while exudation rates of dissolved organic N from roots were not significantly affected by atmospheric CO2 concentration, the previously observed CO2 fertilization effect on N-fixing trees suggests that N exudation from roots could play a significant but minor role in sustaining increases in forest growth, and thus C storage, in a CO2 enriched atmosphere. 相似文献
19.
Young olive plants (Olea europaea L.) were grown either in hydroponic or soil culture in a glasshouse over two growing seasons. Plants were exposed to NaCl concentrations between 0 and 200 mM for 34–35 days followed by 30–34 days of relief from stress to determine the effect of salinity on gas exchange of two cultivars ('Frantoio' and 'Leccino') differing in salt-exclusion capacity. Salinity stress brought about a reduction in net CO2 assimilation and stomatal conductance in both cultivars, but the effect was more pronounced in the salt tolerant 'Frantoio' than in the salt-sensitive 'Leccino' cultivar. Therefore, gas exchange parameters may be misleading if used to evaluate the salt tolerance of olive genotypes. Recovery in gas exchange parameters during relief from stress was slower in the salt sensitive cultivar. In general, the decline in assimilation reflected the salt-induced reduction in stomatal conductance, but a marked effect on carboxylation efficiency and CO2 compensation point was measured in plants treated with 200 mM NaCl for four weeks. The cultivar 'Frantoio' showed a 50% reduction in assimilation and stomatal conductance at 146 and 78 mM leaf Na+ concentration (tissue water molar basis) respectively, whereas the corresponding 50% thresholds for the cultivar 'Leccino' were at 275 and 264 mM, respectively. 相似文献
20.
Genotypic variation in the photosynthetic competence of Sorghum bicolor seedlings subjected to polyethylene glycol-mediated drought stress 总被引:3,自引:0,他引:3
Eleven varieties of Sorghum bicolor, subjected to PEG-mediated drought stress were compared for their photosynthetic performance. The varieties differed in their relative water content over a range of PEG concentrations (0-25%). CO2 assimilation, stomatal conductance and the quantum yield of PSII electron transport decreased with increasing PEG concentrations in all varieties. However the intercellular CO2 concentration showed a nonlinear PEG concentration-dependent change. At lower PEG concentrations there was a decrease in the levels of intercellular CO2 concentration in all varieties that could be attributed to stomatal closure. At higher PEG concentrations, some varieties showed an increase in the intercellular CO2 concentration, indicating an inhibition of photosynthetic activity due to non-stomatal effects, while others did not. It was seen that the varieties differed in the stress thresholds at which stomatal and metabolic limitations to photosynthesis occur. These differences in the photosynthetic adaptation of Sorghum varieties could be useful in identifying genotypes showing large differences in photosynthetic adaptation, which could be useful in mapping photosynthetic traits for drought stress tolerance. 相似文献