首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Double labeling with fluorescent probes showed that in the cortical cytoplasm of pollen tubes ofNicotiana tabacum andLilium longiflorum, the microtubules and actin filaments co-localize for the most part. They displayed complex net-axial or helical distributions. They structural association of microtubules and actin filaments implies a functional relationship with respect to organelle movement and/or the organization of the cortical cytoplasm and cell surface.Abbreviations EGTA ethyleneglycol-bis-(-aminoethylether)-N,N,N,N-tetra-acetic acid - FITC fluoresceine iso-thiocyanate  相似文献   

2.
The dynamic remodeling of actin filaments in guard cells functions in stomatal movement regulation. In our previous study, we found that the stochastic dynamics of guard cell actin filaments play a role in chloroplast movement during stomatal movement. In our present study, we further found that tubular actin filaments were present in tobacco guard cells that express GFP-mouse talin; approximately 2.3 tubular structures per cell with a diameter and height in the range of 1–3 µm and 3–5 µm, respectively. Most of the tubular structures were found to be localized in the cytoplasm near the inner walls of the guard cells. Moreover, the tubular actin filaments altered their localization slowly in the guard cells of static stoma, but showed obvious remodeling, such as breakdown and re-formation, in moving guard cells. Tubular actin filaments were further found to be colocalized with the chloroplasts in guard cells, but their roles in stomatal movement regulation requires further investigation.Key words: actin dynamics, tubular actin filaments, chloroplast, guard cell, stomatal movementStomatal movement responses to surrounding environment are mediated by guard cell signaling.1,2 Actin filaments within guard cells are dynamic cytoarchitectures and function in stomatal development and movement.3 Arrays of actin filaments in guard cells that are dependent on different stomatal apertures have also been reported in references 47. For example, the random or longitudinal orientations of actin filaments in closed stomata change to a radial orientation or ring-like array after stomata opening.5,6,8 The reorganization of the actin architecture during stomatal movement depends on the depolymerization and repolymerization of actin filaments in guard cells. In contrast to the traditional treadmill model of actin dynamic mechanisms, stochastic dynamics of actin have been revealed in plant cells, such as in the epidermal cells of hypocotyl and root, the pavement cells of Arabidopsis cotyledons, and the guard cells of tobacco (Nicotiana tabacum).911 In this alternative system, the short actin fragments generated from severed long filaments can link with each other to form longer filaments by end-joining activity. The actin regulatory proteins, Arp2/3 complex, capping protein and actin depolymerizing factor (ADF)/cofilin, may also be involved in the stochastic dynamics of actin filaments.12,13Using tobacco GFP-mouse talin expression lines, we have previously analyzed the stochastic dynamics of guard cell actin filaments and their roles in chloroplast displacement during stomatal movement.6,11 We found from these analyses that another arrangement of actin filaments, i.e., tubular actin filaments, exists in the guard cells of these tobacco lines. We first found the circle-like actin filaments in 82% of the guard cells (counting 320 cells) in tobacco expressing GFPmouse talin when analyzing a single optical section (Fig. 1A). In a previous study of BY-2 cells expressing GFP-Lifeact labeled actin filaments, Smertenko et al. found similar structures, i.e., quoit-like structures or acquosomes in all of the plant tissues examined except growing root hairs.10 However, in our present analysis of serial sections, we determined that the circle-like actin filaments in the tobacco guard cells were long tubes (Fig. 1A), as the lengths (about 3–5 µm) of these structures were greater than their diameter (about 1–3 µm). Hence, we denoted these structures as tubular actin filaments to distinguish them from the circular conformations of actin filaments observed previously in other plant cell tissues.10,1419 About 2.3 of these tubular actin filaments were found per guard cell, which is less than the number of acquosomes reported in BY-2 cells (about 6.7 per cell).10 Analysis of serial optical sections at the z-axis revealed that the tubular actin filaments localize in the cytoplasm near the inner walls of the guard cells (Fig. 1B), which is similar to the distribution of chloroplasts in guard cells.11 Longitudinal sections further revealed a colocalization of tubular actin filaments and chloroplasts (Fig. 1B).Open in a separate windowFigure 1Tubular actin filaments in the guard cells of a tobacco (Nicotiana tabacum) line expressing GFP-mouse talin. (A) Optical-sections (interval, 1.5 µm) of guard cells in a moving stoma showing tubular actin filaments (arrow heads). Frames (a1) and (a2) are cross sections of 1.5-µm-picture through the yellow and red lines, respectively, revealing the cross section of the circle structures are parallel lines (arrows). (B) Optical-sections of a stoma from the outer periclinal walls to the inner walls of the guard cells (interval, 1 µm). The tubular actin filaments (arrow heads) are localized in the cytoplasm near to the inner periclinal walls of guard cells. Frame (b1) is the guard cell on the right of the frame “4 µm”; (b2) is the cross section of b1 through the red line; and (b3) is a higher magnification image of the area encompassed by the white square in b2. Arrows indicate the colocalization between the tubular actin filaments and the chloroplast (indicated using a red pseudocolor). (C) Time-series imaging showing the movement of tubular actin filaments in the guard cells of static stomata. Frame (c1) comprises three images colored red (0 S), green (40 S) and blue (80 S), that are merged in a single frame to show the translocation of the tubular actin filaments (arrows). (D) Time-series images of the opening stomata showing the breakdown (arrows) and re-formation (arrowheads) of the tubular actin filaments. All images were captured using a Zeiss LSM 510 META confocal laser scanning microscope, as described by Wang et al.11 Bars, 10 µm.We performed time-lapse imaging and found that the translocation of tubular actin filaments is slow in static stomata in which the distance between two tubular actin filaments typically increased from 2.22 to 2.50 µm after 80 sec (Fig. 1C). In moving stomata, however, the tubular actin filaments showed an obvious dynamic reorganization whereby they could be processed into short fragments and also reemerged after they had disintegrated (Fig. 1D). These results indicate that tubular actin filaments have stochastic dynamics that are similar to the long actin filaments of guard cells.11 In our previous study, we found that the stochastic dynamics of actin filaments correlate with light-induced chloroplast movement in guard cells.11 However, whether the dynamics of the tubular actin filaments are also involved in chloroplast movement during stomatal movement remains to be investigated. In cultured mesophyll cells which had been mechanically isolated from Zinnia elegans, Wilsen et al. previously found a close association between fully closed actin rings and chloroplasts.18 These authors further found that the average percentage of cells with free actin rings increased at the initial culture stage, and then decreased, which indicates that the formation of actin rings might be a response of the actin cytoskeleton to cellular stress or disturbance.18 The turgor pressure of guard cells is the fundamental basis of stomatal movement leading to changes in the shape, volume, wall structure, and membrane surface of guard cells.2024 We speculate from our current data that there is a relationship between tubular actin filaments and the shape changes of guard cells during stomatal movement.  相似文献   

3.
Ou GS  Chen ZL  Yuan M 《Protoplasma》2002,219(3-4):168-175
Summary. Jasplakinolide is potentially a useful pharmacological tool for the study of actin organization and dynamics in living cells, since it induces actin polymerization in vitro and, unlike phalloidin, is membrane permeative. In the present work, the effect of jasplakinolide on the actin cytoskeleton of living suspension-cultured Nicotiana tabacum ‘Bright Yellow 2’ cells was investigated. Actin filaments in the living cells were disrupted by jasplakinolide. The effect of jasplakionlide on the actin cytoskeleton was concentration and time dependent. When cells were treated with a moderate concentration (150 nM) of jasplakinolide, cortical actin filaments were disrupted preferentially, whereas actin aggregated at the perinuclear region. With concentrations higher than 400 nM and exposure times longer than 30 min, actin filaments in the cell disappeared completely. The effect of jasplakinolide on the actin cytoskeleton was reversible even at high concentration. Actin bundles appeared first in the perinuclear region within 5 min, and the cortical actin array was reestablished in 15 min, suggesting that actin filaments might be organized at this region. Received July 31, 2001 Accepted December 14, 2001  相似文献   

4.
Localization of actin filaments on mitotic apparatus in tobacco BY-2 cells   总被引:2,自引:0,他引:2  
Yasuda H  Kanda K  Koiwa H  Suenaga K  Kidou S  Ejiri S 《Planta》2005,222(1):118-129
Actin filaments are among the major components of the cytoskeleton, and participate in various cellular dynamic processes. However, conflicting results had been obtained on the localization of actin filaments on the mitotic apparatus and their participation in the process of chromosome segregation. We demonstrated by using rhodamine-phalloidin staining, the localization of actin filaments on the mitotic spindles of tobacco BY-2 cells when the cells were treated with cytochalasin D. At prophase, several clear spots were observed at or near the kinetochores of the chromosomes. At anaphase, the actin filaments that appeared to be pulling chromosomes toward the division poles were demonstrated. However, as there was a slight possibility that these results might have been the artifacts of cytochalasin D treatment or the phalloidin staining, we analyzed the localization of actin filaments at the mitotic apparatus immunologically. We cloned a novel BY-2 -type actin cDNA and prepared a BY-2 actin antibody. The fluorescence of the anti-BY-2 actin antibody was clearly observed at the mitotic apparatus in both non-treated and cytochalasin D-treated BY-2 cells during mitosis. The facts that similar results were obtained in both actin staining with rhodamine-phalloidin and immunostaining with actin antibody strongly indicate the participation of actin in the organization of the spindle body or in the process of chromosome segregation. Furthermore, both filamentous actin and spindle bodies disappeared in the cells treated with propyzamide, which depolymerizes microtubules, supporting the notion that actin filaments are associated with microtubules organizing the spindle body.Hiroshi Yasuda and Katsuhiro Kanda contributed equally.  相似文献   

5.
Summary We studied the mechanism controlling the organization of actin filaments (AFs) inHydrocharis root hair cells, in which reverse fountain streaming occurs. The distribution of AFs and microtubules (MTs) in root hair cells were analyzed by fluorescence microscopy and electron microscopy. AFs and MTs were found running in the longitudinal direction of the cell at the cortical region. AFs were observed in the transvacuolar strand, but not MTs. Ultrastructural studies revealed that AFs and MTs were colocalized and that MTs were closer to the plasma membrane than AFs. To examine if MTs regulate the organization of AFs, we carried out a double inhibitor experiment using cytochalasin B (CB) and propyzamide, which are inhibitors of AFs and MTs, respectively. CB reversibly inhibited cytoplasmic streaming while propyzamide alone had no effect on it. However, after treatment with both CB and propyzamide, removal of CB alone did not lead to recovery of cytoplasmic streaming. In these cells, AFs showed a meshwork structure. When propyzamide was also removed, cytoplasmic streaming and the original organization of AFs were recovered. These results strongly suggest that MTs are responsible for the organization of AFs inHydrocharis root hair cells.  相似文献   

6.
Lyser KM 《Tissue & cell》1971,3(3):395-404
Fibrous structures have been studied in the developing optic nerve of chick embryos. The first ganglion cell axons (3-day embryos) were of moderate size, with both neurofilaments and microtubules. Subsequently (4- and 5-day embryos), very small axons were also present. In thesc embryos and in the 4-day hatched chick, the density of microtubules fell within the same range for all but the very small axons, which tended to have more microtubules per unit area. Filaments similar to those previously thought to represent neurofilaments in other parts of the embryonic nervous system were present in the early optic stalk cells, calling into question the reliability of identifying early nerve cells on the basis of 'neurofilaments'.  相似文献   

7.
Demonstration of actin filaments in sponge cells   总被引:1,自引:0,他引:1  
  相似文献   

8.
We have studied the role of microtubules and actin filaments in the biogenesis of epithelial cell surface polarity, using influenza hemagglutinin and vesicular stomatitis G protein as model apical and basolateral proteins in infected Madin-Darby canine kidney cells. Addition of colchicine or nocodazole to confluent monolayers at concentrations sufficient to completely disassemble microtubules did not affect the asymmetric budding of influenza or vesicular stomatitis virus and only slightly reduced the typical asymmetric surface distribution of their envelope proteins, despite extensive cytoplasmic redistribution of the Golgi apparatus. Alteration of microtubular function by taxol or dissociation of actin filaments by cytochalasin D also failed to have a significant effect. Furthermore, neither colchicine nor cytochalasin D pretreatment blocked the ability of subconfluent Madin-Darby canine kidney cells to sustain polarized budding of influenza virus a few hours after attachment to the substrate. Our results indicate that domain-specific microtubule or actin filament "tracks" are not responsible for the vectorial delivery of apically or basolaterally directed transport vesicles. In conjunction with currently available evidence, they are compatible with a model in which receptors in the cytoplasmic aspect of apical or basolateral regions provide vectoriality to the transport of vesicles carrying plasma membrane proteins to their final surface localization.  相似文献   

9.
Microtubules and microfilaments were localized by an immunocytochemical method in the granular cells of the frog bladder after fixation and isolation. An extensive array of microtubules was observed in the granular cells with an orientation towards the luminal plasma membrane in the supranuclear zone. Actin filaments formed a continuous bundle that underlined the cellular membrane. After incubation in the presence of colchicine, nocodazole, or tubulozole, the microtubular network appeared fragmented but did not disappear completely. These observations are related to the role of the cytoskeleton in the permeability response of the frog bladder epithelium to vasopressin.  相似文献   

10.
11.
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed.  相似文献   

12.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

13.
Correlated waves of actin filaments and PIP3 in Dictyostelium cells   总被引:1,自引:0,他引:1  
Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity.  相似文献   

14.
The current hypothesis of cytokinesis suggests that contractile forces in the cleavage furrow are generated by a circumferential band of actin filaments. However, relatively little is known about the global organization of actin filaments in dividing cells. To approach this problem we have used fluorescence-detected linear dichroism (FDLD) microscopy to measure filament orientation, and digital optical sectioning microscopy to perform three-dimensional reconstructions of dividing NRK cells stained with rhodamine-phalloidin. During metaphase, actin filaments in the equatorial region show a slight orientation along the spindle axis, while those in adjacent regions appear to be randomly distributed. Upon anaphase onset and through cytokinesis, the filaments become oriented along the equator in the furrow region, and along the spindle axis in adjacent regions. The degree of orientation appears to be dependent on cell-cell and cell-substrate adhesions. By performing digital optical sectioning microscopy on a highly spread NRK subclone, we show that actin filaments organize as a largely isotropic cortical meshwork in metaphase cells and convert into an anisotropic network shortly after anaphase onset, becoming more organized as cytokinesis proceeds. The conversion is most dramatic on the adhering ventral surface which shows little or no cleavage activity, and results in the formation of large bundles along the equator. On the dorsal surface, where cleavage occurs actively, actin filaments remain isotropic, showing only subtle alignment late in cytokinesis. In addition, stereo imaging has led to the discovery of a novel set of filaments that are associated with the cortex and traverse through the cytoplasm. Together, these studies provide important insights into the process of actin remodeling during cell division and point to possible additional mechanisms for force generation.  相似文献   

15.
Summary Ring formed actin filaments were observed in tobacco BY-2 cells. The change of this structure during culture was followed by fluorescence microscopy.  相似文献   

16.
The role of actin filaments in regulating plasmodesmal transport has been studied by microinjection experiments in mesophyll cells of tobacco (Nicotiana tabacum L. cv. Samsun). When fluorescent dextrans of various molecular sizes were each co-injected with specific actin filament perturbants cytochalasin D (CD) or profilin into these cells, dextrans up to 20 kilodalton (kDa) moved from the injected cell into surrounding cells within 3–5 min. In contrast, when such dextrans were injected alone or co-injected with phalloidin into the mesophyll cells, they remained in the injected cells. Phalloidin co-injection slowed down or even inhibited CD- or profilin-elicited dextran cell-to-cell movement. Dextrans of 40 kDa or larger were unable to move out of the injected cell in the presence of CD or profilin. These data suggest that actin filaments may participate in the regulation of plasmodesmal transport by controlling the permeability of plasmodesmata.  相似文献   

17.
Summary Fluorescent phallotoxins and heavy meromyosin were used to reveal the organization of the actin cytoskeleton in honeybee photoreceptor cells, and the relationship of actin filaments to the submicrovillar, palisade-like cisternae of the endoplasmic reticulum (ER). Bundles of unipolar actin filaments (pointed end towards the cell center) protrude from the microvillar bases and extend through cytoplasmic bridges that traverse the submicrovillar ER. Within the cytoplasmic bridges, the filaments are regularly spaced and tightly apposed to the ER membrane. In addition, actin filaments are deployed close to the microvillar bases to form a loose web. Actin filaments are scarce in cell areas remote from the rhabdom; these areas contain microtubule-associated ER domains. The results suggest that the actin system of the submicrovillar cytoplasm shapes the submicrovillar ER cisternae, and that the distinct ER domains interact with different cytoskeletal elements.  相似文献   

18.
Summary The ultrastructural study of cross sections of normal skeletal muscle cells showed the existence of irregular patterns of actin filaments in connection with the hexagonal pattern of the myosin filaments. The actin filaments surrounding each myosin filament vary in number from 6 to 11. The most frequent relationship is 9 to 1, followed by 10 to 1 and 8 to 1. The hexagonal pattern of actin filaments was observed only in the 6 to 1 arrays; as the actin filaments increase in number, they tend to form different polygons or circles around the myosin filaments. All described patterns may occur in each sarcomere. The actin to myosin filament ratio varies from 3 to 4 within each individual myofibril. The described variability of the actin filaments arrays leads to several difficulties in an explanation of the mechanism of muscular contraction.Director, Chief of Section, Histology. Profesor Agregado de Embriología e HistologíaProfesor Adjunto de Embriología e HistologíaResidente de Anatomía Patol'ogica de la Ciudad Sanitaria La Paz  相似文献   

19.
We used a glutaraldehyde-tannic acid-saponin fixative to improve the preservation of actin filaments in dividing HeLa cells during preparation for thin sectioning. The contractile ring in the cleavage furrow is composed of a parallel array of actin filaments that circle the equator. We show that many of these actin filaments are arranged in small bundles. These bundles consist of about 25 filaments throughout cytokinesis. For comparison, filopodia on these cells have about 23 actin filaments packed at a higher density than the filaments in the contractile ring bundles. Some of the contractile ring actin filaments appear to radiate out from electron-dense sites on the plasma membrane. The contractile ring also has a large number of short filaments 13 nm in diameter that closely resemble filaments formed from purified human cytoplasmic myosin. These thick filaments are aligned circumferentially and interdigitate with the actin filaments, as expected for a sliding filament mechanism of tension generation. There are no long actin filaments in the mitotic spindle, but there are a large number (400 to 1000 per μm 3) of very short filaments identical in appearance to actin filaments in other parts of these cells. These short filaments may account for the reported staining of the mitotic spindle with fluorescent antibodies to actin and with fluorescent myosin fragments.  相似文献   

20.
Actin labeling at Cys(374) with tethramethylrhodamine derivatives (TMR-actin) has been widely used for direct observation of the in vitro filaments growth, branching, and treadmilling, as well as for the in vivo visualization of actin cytoskeleton. The advantage of TMR-actin is that it does not lock actin in filaments (as rhodamine-phalloidin does), possibly allowing for its use in investigating the dynamic assembly behavior of actin polymers. Although it is established that TMR-actin alone is polymerization incompetent, the impact of its copolymerization with unlabeled actin on filament structure and dynamics has not been tested yet. In this study, we show that TMR-actin perturbs the filaments structure when copolymerized with unlabeled actin; the resulting filaments are more fragile and shorter than the control filaments. Due to the increased severing of copolymer filaments, TMR-actin accelerates the polymerization of unlabeled actin in solution also at mole ratios lower than those used in most fluorescence microscopy experiments. The destabilizing and severing effect of TMR-actin is countered by filament stabilizing factors, phalloidin, S1, and tropomyosin. These results point to an analogy between the effects of TMR-actin and severing proteins on F-actin, and imply that TMR-actin may be inappropriate for investigations of actin filaments dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号