首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Metabolic pathways of threonine in rat liver   总被引:1,自引:0,他引:1  
  相似文献   

6.
The action of carbenoxolone on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In perfused livers, carbenoxolone (200-300 microM) increased oxygen consumption, glucose production and glycolysis from endogenous glycogen. Gluconeogenesis from lactate or fructose, an energy-dependent process, was inhibited. This effect was already evident at a concentration of 25 microM. The cellular ATP levels and the adenine nucleotide content were decreased by carbenoxolone, whereas the AMP levels were increased. In isolated mitochondria, carbenoxolone stimulated state IV respiration and decreased the respiratory coefficient with the substrates beta-hydroxybutyrate and succinate. The ATPase of intact mitochondria was stimulated, the ATPase of uncoupled mitochondria was inhibited, and the ATPase of disrupted mitochondria was not altered by carbenoxolone. These results indicate that carbenoxolone acts as an uncoupler of oxidative phosphorylation and, possibly, as an inhibitor of the ATP/ADP exchange system. The inhibitory action of carbenoxolone on mitochondrial energy metabolism could be contributing to induce the mitochondrial permeability transition (MPT), a key phenomenon in apoptosis. The results of the present study can explain, partly at least, the in vivo hepatotoxic actions of carbenoxolone that were found in a previous clinical evaluation.  相似文献   

7.
8.
The flavonolignan silibinin, which is a mixture of two diastereoisomers, silybin A and silybin B, is a component of the extract obtained from the fruit and seeds of the variegated milk thistle (Silybum marianum (L.) Gaertn. (Asteraceae)), known as silymarin. Among the therapeutic properties credited to silibinin, its antihyperglycaemic action has been extensively explored. Silibinin is structurally related to the flavonoids quercetin and fisetin, which have been previously demonstrated to be very active on liver metabolic processes related to glycaemic regulation. The aim of the present work was to investigate the effects of silibinin on metabolic pathways responsible for the maintenance of glycaemia, particularly glycogenolysis and gluconeogenesis, in the perfused rat liver. The activities of some key enzymes in these pathways and on parameters of energy metabolism in isolated mitochondria were also examined. At a concentration range of 50-300μM, silibinin inhibited gluconeogenesis in the fasted condition and inhibited glycogenolysis and glycolysis in the fed condition. The mechanisms by which silibinin exerted these actions were multiple and complex. It inhibited the activity of glucose 6-phosphatase, inhibited the pyruvate carrier, and reduced the efficiency of mitochondrial energy transduction. It can also act by reducing the supply of NADH for gluconeogenesis and mitochondria through its pro-oxidative actions. In general, the effects and the potency of silibinin were similar to those of quercetin and fisetin. However, silibinin exerted some distinct effects such as the inhibitory effect on oxygen consumption in the fed condition and a change in the energy status of the perfused livers. It can be concluded that the effects of silibinin on liver glucose metabolism may explain its antihyperglycaemic property. However, this effect was, in part, secondary to impairment in cellular energy metabolism, a finding that should be considered in its therapeutic usage.  相似文献   

9.
Metabolic studies on retinoic acid in the rat   总被引:1,自引:1,他引:0       下载免费PDF全文
The nature of metabolites in the urine arising from differentially labelled retinoic acid was investigated after injection of physiological doses into retinol-deficient rats. Distribution of radioactivity after partition of urine into ether-soluble, acidic and water-soluble fractions revealed that there were at least six metabolites in urine. Of these, the major metabolite(s) was one lacking both C-14 and C-15 of retinoic acid. Enzymic or alkaline hydrolysis of acidic and water-soluble fractions did not release any retinoic acid, thus indicating that retinoyl beta-glucuronide was not present in urine in significant amounts.  相似文献   

10.
11.
12.
13.
14.
The NADPH is one of the cofactors in ethanol metabolism. The aim of the study was to investigate the effect of ethanol on a NADPH generating enzyme (G6P-DH) and on some metabolic parameters of the liver. After a 2-day starvation period rats were fed a lipid free diet for three days. During this refeeding period the animals were divided into three groups; they received a single daily dose of 4 g per kg b.w. ethanol, isocaloric aqueous glucose solution or water by gastric tube. In response to ethanol the activity of hepatic G6P-DH decreased. The amount of triglyceride remained unchanged, certain changes occurred in the fatty acid composition of total lipid. The liver glycogen content was elevated. In female rats treated with ethanol the activity of glucose-6-phosphatase increased.  相似文献   

15.
16.
The p-coumaric acid, a phenolic acid, occurs in several plant species and, consequently, in many foods and beverages of vegetable origin. Its antioxidant activity is well documented, but there is also a single report about an inhibitory action on the monocarboxylate carrier, which operates in the plasma and mitochondrial membranes. The latter observation suggests that p-coumaric acid could be able to inhibit gluconeogenesis and related parameters. The present investigation was planned to test this hypothesis in the isolated and hemoglobin-free perfused rat liver. Transformation of lactate and alanine into glucose (gluconeogenesis) in the liver was inhibited by p-coumaric acid (IC50 values of 92.5 and 75.6 microM, respectively). Transformation of fructose into glucose was inhibited to a considerably lower degree (maximally 28%). The oxygen uptake increase accompanying gluconeogenesis from lactate was also inhibited. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 160.1 microM); no such effect was observed in freeze-thawing disrupted mitochondria. Glucose 6-phosphatase and fructose 1,6-bisphosphatase were not inhibited. In isolated intact mitochondria, p-coumaric acid inhibited respiration dependent on pyruvate oxidation but was ineffective on respiration driven by succinate and beta-hydroxybutyrate. It can be concluded that inhibition of pyruvate transport into the mitochondria is the most prominent primary effect of p-coumaric acid and also the main cause for gluconeogenesis inhibition. The existence of additional actions of p-coumaric acid, such as enzyme inhibitions and interference with regulatory mechanisms, cannot be excluded.  相似文献   

17.
Synthesis and turnover of histone I and II in normal rat liver and spleen were studied by Amberlite CG 50 column chromatography. Histone I was separated into three or four subfractions, each of which showed a different rate of incorporation of [3H]lysine. This was verified by a more shallow gradient chromatography developed by Kinkade and Cole [3] for very lysine-rich histone (F1), which showed tissue specific differences between liver and spleen in both the elution pattern and synthetic rates. These subfractions were distinguished from each other by dodecylsulphate electrophoresis. The turnover, or disassociation of histone I and II in chromatin was measured by double-labelling of normal rat liver with [3H] and [14C]lysine. A good correspondence was found between the synthesis and turnover patterns of individual histone I fractions, while the histone II synthesized was conserved for over a month. From consideration of the turnover in relation to the cell population of normal liver tissue, which consists of a very small fraction of growing cells and a very large fraction of resting ones, it was concluded that turnover of histone I must occur even in resting cells. When DNA synthesis in the spleen was completely inhibited by hydroxyurea, the synthesis of histone II was inhibited but that of histone I was only partially inhibited. The remaining synthesis seemed to occur in cells in the resting state. It was concluded tentatively, the continuous replacement of very lysine-rich histones of chromatin must occur even in resting cells in which DNA synthesis has ceased. The biological significance of disassociation of histones from chromatin was discussed.  相似文献   

18.
19.
20.
1. Livers from fed male rats were perfused in situ in a non-recirculating system with whole rat blood containing acetate at six concentrations, from 0.04 to 1.5 μmol/ml, to cover the physiological range encountered in the hapatic portal venous blood in vivo. 2. Below a concentration of 0.25 μmol/ml there was net production of acetate by the liver, while above it there was ner uptake with a fractional extraction of 40%. 3.No relationship was observed between blood [acetate] and hepatic ketogenesis, the ration [3-hydroxybutyrate]/[acetoacetate] or glucose output, either at low fatty acid concentration s or during oleate infusion. 4. Following the increase in serum fatty acid concentration, induced by oleate infusion, there were suquential incresase in ketogenesis and the ratio of [3-hydroxybutyrate]/[acetoacetate] while glucose output rose and lactate uptake fell significantly after in redox state. 5. There was a highly significant negative correlation between blood [acetate] and hepatic lactate uptake during oleate infusion. At the highest acetate concentration of 1.5 μmol/ml there was a small net hepatic lactate output. After oleate infusion ceased, lactate uptake increased, but the negative correlation between blood [acetate] and hepatic lactate uptake persisted. 6. Livers were also perfused with iether [1-14C]acetate or [U-14C]lactate at a concentration of acetate of either 0.3 or 1.3 μmol/ml of blood. With [1-14C]acetate, most of the radioactivity was recovered as fatty acids at the lower concentration of blood acetate. At the higher blood [acetate] a considerably smaller proportion of the radioactivity was recovered in lipids. With [U-14C]lactate the reverse pattern obtained i.e., recovery was greater at the high concentration of acetate and fell at the low concentration. Fatty acid biosynthesis, measured with 3H2O, was stimulated from 2.4 to 6.6 μmol of fatty acid/g of liver per h by high blood [acetate] although the contribution of (acetate+lactate) to synthesis remained constant at 33–38% of the total. 7. These results emphasize the important role of the liver in regulating blood acetate concentrations and indicate that it can be major hepatic substrate. Acetate taken up by the liver appeared to compete directly with lactate, for lipogenesis and metabolism and acetate uptake was inhibited by raised bloodd [lactate].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号