首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphorylation of the retinoblastoma protein (pRB) is assumed to regulate its growth-controlling function. Moreover, hypophosphorylated and hyperphosphorylated forms of pRB can be distinguished by virtue of the distinct affinities with which they bind to the cell nucleus. This property allows the identification of individual cell nuclei that contain pRB in one or the other form. We show here that after cells emerge from a quiescent (G0) state, conversion of their complement of pRB into a hyperphosphorylated form occurs in late G1, preceding entry into S phase by several hours. Thus, contrary to earlier reports, pRB phosphorylation is not co-ordinated with the G1-S transition and may not directly regulate it. A distinct set of phosphopeptides is found exclusively in those forms of pRB that show the loose nuclear association characteristic of the hyperphosphorylated form of pRB. Another set of phosphopeptides is found with both hypophosphorylated and hyperphosphorylated forms. This suggests the existence of distinct patterns of phosphorylation that are associated with different subsets of pRB molecules. We conclude that substantial phosphorylation of pRB exists in G1 even prior to the hyperphosphorylation point. Cyclin-dependent kinases can cause a liberation of pRB from cell nuclei in vitro. Phosphorylation by members of this kinase family is therefore likely to be directly involved in the change in nuclear affinity in vivo and the associated changes in pRB functioning.  相似文献   

3.
Patrick SM  Oakley GG  Dixon K  Turchi JJ 《Biochemistry》2005,44(23):8438-8448
Replication protein A (RPA) is a heterotrimeric protein consisting of 70-, 34-, and 14- kDa subunits that is required for many DNA metabolic processes including DNA replication and DNA repair. Using a purified hyperphosphorylated form of RPA protein prepared in vitro, we have addressed the effects of hyperphosphorylation on steady-state and pre-steady-state DNA binding activity, the ability to support DNA repair and replication reactions, and the effect on the interaction with partner proteins. Equilibrium DNA binding activity measured by fluorescence polarization reveals no difference in ssDNA binding to pyrimidine-rich DNA sequences. However, RPA hyperphosphorylation results in a decreased affinity for purine-rich ssDNA and duplex DNA substrates. Pre-steady-state kinetic analysis is consistent with the equilibrium DNA binding and demonstrates a contribution from both the k(on) and k(off) to achieve these differences. The hyperphosphorylated form of RPA retains damage-specific DNA binding, and, importantly, the affinity of hyperphosphorylated RPA for damaged duplex DNA is 3-fold greater than the affinity of unmodified RPA for undamaged duplex DNA. The ability of hyperphosphorylated RPA to support DNA repair showed minor differences in the ability to support nucleotide excision repair (NER). Interestingly, under reaction conditions in which RPA is maintained in a hyperphosphorylated form, we also observed inhibition of in vitro DNA replication. Analyses of protein-protein interactions bear out the effects of hyperphosphorylated RPA on DNA metabolic pathways. Specifically, phosphorylation of RPA disrupts the interaction with DNA polymerase alpha but has no significant effect on the interaction with XPA. These results demonstrate that the effects of DNA damage induced hyperphosphorylation of RPA on DNA replication and DNA repair are mediated through alterations in DNA binding activity and protein-protein interactions.  相似文献   

4.
H Kimura  N Nozaki    K Sugimoto 《The EMBO journal》1994,13(18):4311-4320
We isolated a murine gene for the DNA polymerase alpha associated protein P1, which shares high homology with the budding yeast MCM3 protein, which is a member of a protein family involved in the early event of DNA replication having a putative DNA-dependent ATPase motif. Using a polyclonal anti-P1 antibody raised against a beta-galactosidase-P1 fusion protein, we identified at least two forms of P1 protein in the nucleus of a mouse cell line, an underphosphorylated form that was associated with a particular nuclear structure and a hyperphosphorylated form loosely bound to the nucleus. During progression through S phase, P1 disappeared, first from the euchromatic region, then from the heterochromatic region, apparently in parallel with temporally ordered DNA replication. Thus, it is likely that the underphosphorylated P1 is dissociated from the nuclear structure after DNA replication by cell cycle-dependent phosphorylation. This is the first direct observation of a protein whose behavior is consistent with that of a hypothetical factor which restricts the chromatin to replicate once per cell cycle in higher eukaryotes.  相似文献   

5.
6.
The retinoblastoma protein (pRb) inhibits progression through the cell cycle. Although pRb is phosphorylated when G1 cyclin-dependent kinases (Cdks) are active, the mechanisms underlying pRb regulation are unknown. In vitro phosphorylation by cyclin D1/Cdk4 leads to inactivation of pRb in a microinjection-based in vivo cell cycle assay. In contrast, phosphorylation of pRb by Cdk2 or Cdk3 in complexes with A- or E-type cyclins is not sufficient to inactivate pRb function in this assay, despite extensive phosphorylation and conversion to a slowly migrating "hyperphosphorylated form." The differential effects of phosphorylation on pRb function coincide with modification of distinct sets of sites. Serine 795 is phosphorylated efficiently by Cdk4, even in the absence of an intact LXCXE motif in cyclin D, but not by Cdk2 or Cdk3. Mutation of serine 795 to alanine prevents pRb inactivation by Cdk4 phosphorylation in the microinjection assay. This study identifies a residue whose phosphorylation is critical for inactivation of pRb-mediated growth suppression, and it indicates that hyperphosphorylation and inactivation of pRb are not necessarily synonymous.  相似文献   

7.
Mitogenic activities of simian virus 40 large T and small t antigens were studied in serum-deprived human diploid fibroblasts. Wild-type large T and small t cooperated in stimulating DNA synthesis and in inducing hyperphosphorylation of the Rb gene product (pRb). In contrast, a T antigen mutant defective for pRb binding (Rb- T) possessed no detectable mitogenic activity alone and failed to complement small t in stimulating DNA synthesis. Surprisingly, Rb- T and small t cooperated as strongly as wild-type T and small t with respect to pRb hyperphosphorylation. As a consequence, in two closely related conditions (i.e., stimulation by small t plus wild-type T versus small t plus Rb- T), the fraction of pRb in hyperphosphorylated forms dissociated from the fraction of cells in the S phase. These results indicate that pRb hyperphosphorylation is not always tightly coupled with a commitment to initiate DNA replication.  相似文献   

8.
During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.  相似文献   

9.
10.
Phosphorylation of transfected wild type and mutated progesterone receptors   总被引:2,自引:0,他引:2  
An expression vector encoding wild type or mutated forms of the rabbit progesterone receptor was transfected into COS-7 cells and phosphorylation was studied by incubation with 32Pi followed by specific immunoprecipitation. The features of phosphorylation of the wild type receptor were identical to those previously observed in uterine cells: there was a basal level of phosphorylation which was increased approximately 7-fold by incubation with the hormone. The hyperphosphorylated receptor had decreased electrophoretic mobility ("upshift"). These experiments thus showed that the presence of the receptor specific kinase is not restricted to the target cells. Cleavage of the receptor by hydroxylamine and cyanogen bromide, and use of receptor mutants deleted in the N-terminal region, showed the absence of any detectable phosphorylation downstream from amino acid 520 (thus in the DNA and steroid binding domains). The majority of the phosphorylation sites were localized between amino acids 166 and 520. This localization was similar for basal and hormone-induced phosphorylation. DNA binding and hormone-induced hyperphosphorylation were not directly related, since deletion of the first zinc finger provided a hyperphosphorylated receptor. We showed that the constitutive receptor (totally deleted in the steroid binding region) exhibited only a low basal level of phosphorylation, and antagonist RU 486-receptor complexes were found to be hyperphosphorylated, leading us to conclude that the active form of the receptor was not the hyperphosphorylated one. Moreover receptor down regulation and hormone-induced receptor hyperphosphorylation were two independent phenomena. Basal phosphorylation was observed for both cytoplasmic and nuclear mutants, whereas nuclear localization was necessary but not sufficient for hyperphosphorylation. Finally, the second finger region and the hormone binding domain, which are necessary for receptor hyperphosphorylation, may be involved in the hormonally induced increased affinity of the receptor toward its kinase.  相似文献   

11.
《The Journal of cell biology》1995,129(6):1433-1445
We have recently cloned and characterized a human member (BM28) of the MCM2-3-5 family of putative relication factors (Todorov, I.T., R. Pepperkok, R.N. Philipova, S. Kearsey, W. Ansorge, and D. Werner. 1994. J. Cell Sci. 107:253-265). While this protein is located in the nucleus throughout interphase, we report here a dramatic alteration in its nuclear binding during the cell cycle. BM28 is retained in the nucleus after Triton X-100 extraction in G1 and early S phase cells, but is progressively lost as S phase proceeds, and little BM28 is retained in detergent-extracted G2 nuclei. BM28 that is resistant to extraction in G1 nuclei is removed by DNase I digestion, suggesting that the protein is chromatin associated. In addition, we present evidence for variations in the electrophoretic mobility of BM28 that may reflect posttranslational modifications of BM28 during the cell cycle. During mitosis, BM28 is present as a fast-migrating form, but on entry into G1, the protein is converted into a slow-migrating form. With the onset of S phase, the slow-migrating form is progressively converted into the fast form. BM28 is phosphorylated at all stages of the cell cycle, but during interphase the fast form is hyperphosphorylated compared with the slow form. These apparent changes in modification may reflect or effect changes in the nuclear binding of BM28. The behavior of BM28 is not dissimilar to related proteins in Saccharomyces cerevisiae, such as Mcm2p, which are excluded from the nucleus after DNA replication. We speculate that BM28 may be involved in the control that limits eukaryotic DNA replication to one round per cell cycle.  相似文献   

12.
The microtubule-associated protein tau is a family of six isoforms that becomes abnormally hyperphosphorylated and accumulates in neurons undergoing neurodegeneration in the brains of patients with Alzheimer disease (AD). We investigated the isoform-specific interaction of normal tau with AD hyperphosphorylated tau (AD P-tau). We found that the binding of AD P-tau to normal human recombinant tau was tau4L > tau4S > tau4 and tau3L > tau3S > tau3, and that its binding to tau4L was greater than to tau3L. AD P-tau also inhibited the assembly of microtubules promoted by each tau isoform and caused disassembly when added to preassembled microtubules. This inhibition and depolymerization of microtubules by the AD P-tau corresponded directly to the degree of its interaction with the different tau isoforms. In vitro hyperphosphorylation of recombinant tau (P-tau) conferred AD P-tau-like characteristics. Like AD P-tau, P-tau interacted with and sequestered normal tau and inhibited microtubule assembly. These studies suggest that the AD P-tau interacts preferentially with the tau isoforms that have the amino-terminal inserts and four microtubule binding domain repeats and that hyperphosphorylation of tau appears to be sufficient to acquire AD P-tau characteristics. Thus, lack of amino-terminal inserts and extra microtubule binding domain repeat in fetal human brain might be protective from Alzheimer's neurofibrillary degeneration.  相似文献   

13.
Human papillomavirus type 16 E7 is considered to be a major viral oncoprotein playing an important role(s) in cervical cancers. E7 protein was shown to bind to the protein product of the retinoblastoma gene (RB), while simian virus 40 large T and adenovirus E1A were also shown to possess binding activity to RB protein. The RB protein is a cell cycle regulator that is highly phosphorylated specifically in S, G2, and M, whereas it is underphosphorylated in G0 and G1. Recently, large T was demonstrated to bind preferentially to the underphosphorylated RB protein, which is considered to be an active form restricting cell proliferation. However, it is not known whether E7 can bind to phosphorylated RB protein. We successfully purified large quantities of unfused human papillomavirus type 16 E7 protein expressed in Escherichia coli by using a T7 promoter-T7 RNA polymerase system. The purified E7 protein was demonstrated to bind preferentially to the underphosphorylated RB protein.  相似文献   

14.
A total of 40 human brain tumor samples were analyzed for tumor-specific alterations at the RB1 gene locus. Gliomas were more prevalent in younger males and meningiomas in older females. Southern blot analysis revealed loss of heterozygosity (LOH) at the intron 1 locus of RB1 gene in 19.4% of informative cases and this is the first report showing LOH at this locus in human brain tumors. Levels of RB1 mRNA and protein, pRb, and the percentage of hyperphosphorylated form of pRb were also analyzed in these tumors. Normal human fibroblast cell line WI38 was used as control in northern and western analysis. Normal sized RB1 mRNA and protein were present in all the tumor samples. Majority of the gliomas had 2.0-fold or higher levels of RB1 mRNA and most meningiomas had less than 2.0-fold of RB1 mRNA compared to control WI38 cells. The total pRb levels were 2.0-fold or higher in all the tumor samples compared to control. More than 50% of pRb existed in hyperphosphorylated form in all gliomas except two. However, six out of 13 meningiomas had less than 50% of total pRb in the hyperphosphorylated form. These results indicate that the increased percentage of hyperphosphorylated form of pRb in gliomas could provide growth advantage to these tumors. Presence of LOH at the RB1 gene locus and the increased levels of RB1 RNA and protein and increased percentage of hyperphosphorylated form of pRb are indicative of an overall deregulation of pRb pathway in human brain tumors.  相似文献   

15.
In addition to its well-characterized function as a tumor suppressor, p14ARF (ARF) is a positive regulator of topoisomerase I (topo I), a central enzyme in DNA metabolism and a target for cancer therapy. We previously showed that topo I hyperphosphorylation, a cancer-associated event mediated by elevated levels of the protein kinase CK2, increases topo I activity and the cellular sensitivity to topo I-targeted drugs. Topo I hyperphosphorylation also increases its interaction with ARF. Because the ARF−topo I interaction could be highly relevant to DNA metabolism and cancer treatment, we identified the regions of topo I involved in ARF binding and characterized the effects of ARF binding on topo I function. Using a series of topo I deletion constructs, we found that ARF interacted with the topo I core domain, which encompasses most of the catalytic and DNA-interacting residues. ARF binding increased the DNA relaxation activity of hyperphosphorylated topo I by enhancing its association with DNA, but did not affect the topo I catalytic rate. In cells, ARF promoted the chromatin association of hyperphosphorylated, but not basal phosphorylated, topo I, and increased topo I-mediated DNA nicking under conditions of oxidative stress. The aberrant nicking was found to correlate with increased formation of DNA double-strand breaks, which are precursors of many genome destabilizing events. The results suggest that the convergent actions of oxidative stress and elevated CK2 and ARF levels, which are common features of cancer cells, lead to a dysregulation of topo I that may contribute both to the cellular response to topo I-targeted drugs and to genome instability.  相似文献   

16.
Tau蛋白是神经元中含量最高的微管相关蛋白,其经典生物学功能是促进微管组装和维持微管的稳定性.在阿尔茨海默病(Alzheimer's disease,AD)患者,异常过度磷酸化的Tau蛋白以配对螺旋丝结构形成神经原纤维缠结并在神经元内聚积.大量研究提示,Tau蛋白异常在AD患者神经变性和学习记忆障碍的发生发展中起重要作用.本课题组对Tau蛋白异常磷酸化的机制及其对细胞的影响进行了系列研究,发现Tau蛋白表达和磷酸化具有调节细胞生存命运的新功能,并由此对AD神经细胞变性的本质提出了新见解.本文主要综述作者实验室有关Tau蛋白的部分研究结果.  相似文献   

17.
M Cou  S E Kearsey    M Mchali 《The EMBO journal》1996,15(5):1085-1097
A Xenopus homologue of Schizosaccharomyces pombe cdc21 has been characterized as a new member of the MCM family of proteins. The cdc21 protein exhibits cell-cycle dependent chromatin binding and phosphorylation in association with S-phase control. Cdc21 binds to decondensing chromatin at the end of mitosis, localizing to numerous foci which form prior to reconstitution of the nuclear membrane. The association of cdc21 with chromatin occurs in membrane-free high speed extracts and is resistant to detergent extraction. The spatial organization of the cdc21 foci resembles that of pre-replication centres though no co-localization with RP-A was observed. Cdc21 remains bound to chromatin during the initiation of DNA replication and is displaced as the DNA replication forks progress. These subnuclear changes in localization correlate with cell-cycle-regulated changes in phosphorylation. Cdc21 binds to chromatin in an underphosphorylated state, but in early S phase the nuclear localized cdc21 is partially phosphorylated before it is displaced from the chromatin. Cytoplasmic cdc21 remains underphosphorylated but at the beginning of mitosis the entire pool of cdc21 is hyperphosphorylated, possibly by the cdc2/cyclin B kinase. These properties identify Xenopus cdc21 as a possible component of the DNA licensing factor.  相似文献   

18.
19.
The nuclear receptor mouse retinoid X receptor alpha (mRXRalpha) was shown to be constitutively phosphorylated in its NH2-terminal A/B region, which contains potential phosphorylation sites for proline-directed Ser/Thr kinases. Mutants for each putative site were generated and overexpressed in transfected COS-1 cells. Constitutively phosphorylated residues identified by tryptic phosphopeptide mapping included serine 22 located in the A1 region that is specific to the RXRalpha1 isoform. Overexpression and UV activation of the stress-activated kinases, c-Jun NH2-terminal kinases 1 and 2 (JNK1 and JNK2), hyperphosphorylated RXRalpha, resulting in a marked decrease in its electrophoretic mobility. This inducible hyperphosphorylation involved three residues (serines 61 and 75 and threonine 87) in the B region of RXRalpha and one residue (serine 265) in the ligand binding domain (E region). Binding assays performed in vitro with purified recombinant proteins demonstrated that JNKs did not interact with RXRalpha but bound to its heterodimeric partners, retinoic acid receptors alpha and gamma (RARalpha and RARgamma). Hyperphosphorylation by JNKs did not affect the transactivation properties of either RXRalpha homodimers or RXRalpha/RARalpha heterodimers in transfected cultured cells.  相似文献   

20.
Polyomavirus large T antigen (LT) is a multifunctional nuclear protein. LT has two nuclear localization signals (NLS2), one spanning residues 189 to 195 (NLS1) and another spanning residues 280 to 286 (NLS2). Site-directed mutagenesis showed that each signal contains at least two critical residues. The possibility of connections between NLSs and adjacent phosphorylations has attracted much attention. Cytoplasmic LT (CyT) mutants were underphosphorylated, particularly at sites adjacent to NLS2. However, since a nuclear LT bearing an inactivated NLS2 was phosphorylated normally at adjacent sites, the signal was not directly required for phosphorylation. Conversely, LT could be translocated to the nucleus via NLS2 even when the adjacent phosphorylation sites were deleted. CyT was examined to probe the importance of LT localization. CyT was unable to perform LT functions related to interactions with retinoblastoma susceptibility gene (pRb) family members. Hence, CyT was unable to immortalize primary cells or to transactivate an E2F-responsive promoter. Consistent with these findings, CyT, though capable of binding pRb in vitro, did not cause relocalization of pRb in cells. Assays of transactivation of the simian virus 40 late promoter and of the human c-fos promoter showed that defects of CyT were not limited to functions dependent on pRb interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号